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Abstract— Stochastic matrices are commonly used to analyze
Markov chains, but revealing them can leak sensitive infor-
mation. Therefore, in this paper we introduce a technique to
privatize stochastic matrices in a way that (i) conceals the
probabilities they contain, and (ii) still allows for accurate
analyses of Markov chains. Specifically, we use differential
privacy, which is a statistical framework for protecting sensitive
data. To implement it, we introduce the Matrix Dirichlet
Mechanism, which is a probabilistic mapping that perturbs
a stochastic matrix to provide privacy. We prove that this
mechanism provides differential privacy, and we quantify the
error induced in private stochastic matrices as a function of
the strength of privacy being provided. We then bound the
distance between the stationary distribution of the underlying,
sensitive stochastic matrix and the stationary distribution of
its privatized form. Numerical results show that, under typical
conditions, privacy introduces error as low as 5.05% in the
stationary distribution of a stochastic matrix.

I. INTRODUCTION

Control applications have become increasingly reliant on
user data, e.g., in smart power grids [1], smart transit applica-
tions [2], and networks of robots [3]. There are often privacy
concerns associated with sharing user data because of what
it can reveal. For example, smart appliance usage data [4],
driving routines [5], and other sensitive data streams [6], [7]
can be revealing about a user’s past daily habits or locations,
and allow inferences to be drawn about these behaviors in
the future. Data is still needed in many applications, and
it is therefore desirable to provide privacy to users while
preserving the usefulness of their data.

In this paper, we provide privacy of this kind to Markov
chain models of systems. Markov chains have been used to
model smart power grids, users’ online behavior, and devices
on the Internet of Things (IoT) [8]–[10]. Markov chains
model a system with random transitions between a finite
number of states, and the probabilities of these transitions are
represented by a stochastic matrix [11], i.e., a matrix with
non-negative entries whose rows sum to one. The entries of
a stochastic matrix are sensitive because they can reveal how
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often a user engages in a certain behavior or how likely they
are to engage in it, e.g., by revealing the probability of home
occupancy at a given time of day, browsing and shopping
patterns, or trends in smart device usage [12], [13]. These
privacy threats pose a significant risk to individuals, and they
motivate us to privatize stochastic matrices.

We do so using differential privacy, which originates in
the computer science literature, where it was originally used
to protect sensitive data when databases are queried [14].
Differential privacy is appealing because (i) it is immune to
post-processing, in the sense that arbitrary post-hoc compu-
tations on private data do not weaken its privacy protections,
and (ii) it is robust to side information [15], in that gaining
knowledge of some sensitive information does not weaken
differential privacy by much [16]. It is also known that one
can attain strong differential privacy protections while still
providing accurate information [15]. In this paper, the queries
that we consider are identity queries of stochastic matrices,
i.e., releasing a stochastic matrix itself, and this is what we
will privatize.

There is a growing body of work on differential privacy
in decision systems, including in multi-agent control, convex
optimization, filtering and estimation, and symbolic systems
[17]–[22]. These works generally implement differential
privacy for numerical data using the Laplace or Gaussian
mechanisms, which add noise to sensitive data (or functions
thereof) before it is shared. However, these mechanism are a
poor fit for the privatization of stochastic matrices. Stochastic
matrices have non-negative entries and row sums equal to
one, but the outputs of the Laplace and Gaussian mechanisms
will not preserve these properties. Therefore, projection onto
the allowable set of data would be required, but this has
been shown to destroy the accuracy of private data in similar
contexts [23]. Thus, new developments are required.

Accordingly, to provide differential privacy to stochastic
matrices, the contributions of this paper are as follows:

• We develop the Matrix Dirichlet Mechanism, the first
differential privacy mechanism for stochastic matrices

• We bound the error induced by differential privacy
between a privatized stochastic matrix and its non-
private form in terms of the strength of privacy

• To quantify the utility of privatized stochastic matrices,
we bound the distance between the stationary distribu-
tion of a stochastic matrix and the stationary distribution
of its privatized form

• We show in simulation that, under typical conditions,
the errors induced by privacy are as low as 5.05%



The rest of this paper is organized as follows. Section II
provides background and problem statements. Section III
implements differential privacy using the Matrix Dirichlet
Mechanism and quantifies the error it induces. Section IV
analyzes the trade-off between privacy and accuracy of the
stationary distribution of a Markov chain. Section V provides
simulations and Section VI concludes.

Notation: We use R and N to denote the real and natural
numbers, respectively. The set R+ denotes the positive reals.
We use |S| to denote the cardinality of a finite set S. For
n ∈ N, let [n] = {1, . . . , n}. We use 1n to denote the vector
of all ones in Rn.

II. BACKGROUND AND PROBLEM STATEMENTS

This section provides background on Markov chains and
differential privacy, and then it states the problems that are
the focus of the remainder of the paper.

A. Unit Simplex and Stochastic Matrices

Each row of a stochastic matrix is an element of the
unit simplex, which is the set of vectors with non-negative
elements that sum to 1. Formally, let n ∈ N. The unit simplex
in Rn is denoted by ∆n, where

∆n =

{
x ∈ Rn |

n∑
i=1

xi = 1, xi ≥ 0 for all i ∈ [n]

}
.

Next, we define the bordered unit simplex. The bordered unit
simplex is the set of vectors within the unit simplex whose
components are a sufficient distance from 0 and 1.

Definition 1 (Bordered Unit Simplex). Let ∆◦
n denote the

interior of ∆n. Fix η, η̄ > 0 and let W ⊆ [n − 1] satisfy
|W | ≥ 2. Then the bordered unit simplex is defined as

∆
(η,η̄)
n,W =

{
x ∈ ∆◦

n |
∑
i∈W

xi ≤ 1− η̄,

xi ≥ η for all i ∈W

}
. ♢

We also establish some mathematical notation for special
functions used throughout this work. P [·] denotes the prob-
ability of an event. For a random variable, E [·] denotes its
expectation and Var [·] denotes its variance. The notation ∥·∥1
denotes the 1-norm of a vector or matrix. The space on which
we use ∥·∥1 will be clear from context. For x, a, b ∈ R+,
we use the special functions Γ (x) =

∫∞
0
zx−1 exp (−z) dz,

ψ(x) = Γ′(x)
Γ(x) ,

beta (a, b) =
∫ 1

0

ta−1 (1− t)
b−1

dt =
Γ (a) Γ (b)

Γ (a+ b)
, (1)

Iz (a, b) =

∫ z

0
xa−1 (1− x)

b−1
dx

beta (a, b)
, (2)

which are the gamma, digamma, beta, and regularized incom-
plete beta functions, respectively. Additionally, the gamma
function has the property Γ (k + 1) = kΓ (k).

In this work, we implement privacy by generating random
matrices whose rows are in the unit simplex. A building
block of this technique is the Dirichlet distribution on the unit
simplex. Formally, for a parameter k ∈ R+ and a vector p ∈
∆◦

n, the Dirichlet distribution with mean p and parameterized
by k is denoted M(k)

D and defined as

P
[
M(k)

D (p) = x
]
=

1

B (kp)

n∏
i=1

xkpi−1
i , (3)

where

B (kp) =

∏n
i=1 Γ (kpi)

Γ

(
k

n∑
i=1

pi

)
is the multi-variate beta function.

A matrix whose rows all belong to the unit simplex is
known as a stochastic matrix. Formally, fix n ∈ N. We define
Sn as the set of all n× n stochastic matrices, where

Sn =
{
P ∈ Rn×n | Pij ≥ 0 for all i, j ∈ [n] , P1n = 1n

}
.

Next, we discuss the application of stochastic matrices to
Markov chain models.

B. Markov Chains
We now review the necessary background on Markov

chains. See [11] for a more detailed exposition. A Markov
chain is a sequence of random variables X1, X2, X3, . . . , Xk

that possess the Markov property [11], namely

P (Xk+1 = xk+1 | X1 = x1, X2 = x2, · · · , Xk = xk)

= P (Xk+1 = xk+1 | Xk = xk) .

In words, the conditional probability of transitioning from
state xk to state xk+1 is independent of the sequence of states
that came before the current state xk. In this work, we con-
sider finite, irreducible, homogeneous Markov chains. That
is, Markov chains where (i) its random variables take values
in a finite set, (ii) transition is possible from one state to
any other state using only transitions of positive probability,
and (iii) the transition probabilities are independent of time
[11]. Since we consider finite Markov chains, we construct
a transition probability matrix P where Pij = P(Xk+1 =
xj | Xk = xi). This transition matrix P is stochastic by
construction. Let Pi denote the ith row of the transition
probability matrix P .

At each time step, we compute the probability distribution
of the states of a Markov chain. Let µk ∈ ∆n denote the
probability distribution of states at time k. That is, µk,i is the
probability that the Markov chain is in state i at time k. Let
µ0 ∈ ∆n denote the initial state distribution. Multiplying by
the transition matrix P on the right updates the distribution
by another time step, i.e., µT

k = µT
k−1P. In general, µT

k =
µT
0 P

k for all k ≥ 1.
A common way to analyze Markov chains is through

their steady-state behavior. Specifically, when P is finite,
irreducible, and homogeneous, there exists a limit π as
t → ∞ that must satisfy πT = πTP , where π is called
the “stationary distribution” of the Markov chain.



C. Differential Privacy

We briefly review differential privacy here, and we refer
the reader to [15] for a more complete exposition. Dif-
ferential privacy protects sensitive data by randomizing it
or functions of it. Differential privacy is enforced by a
randomized mapping, or mechanism, that outputs statistically
“similar” private values for “close” pieces of sensitive data.
Formally, an adjacency relation allows us to quantify how
“close” two pieces of data are. In the standard setup, two
databases D and D

′
are adjacent if they differ in one

entry [24]. Adjacency is a design choice we make that
specifies what must be kept private. We state our adjacency
relation for stochastic matrices in Section III-A.

The condition that private outputs be statistically “similar”
is formalized by the definition of differential privacy itself. In
this work, we utilize probabilistic differential privacy, which
is defined as follows.

Definition 2 (Probabilistic Differential Privacy [25]). Let P
and Q be two adjacent data sets, let M be a randomized
privacy mechanism, and let S be the set of possible out-
puts of the mechanism. The mechanism M satisfies (ϵ, δ)-
probabilistic differential privacy if we can partition the output
space S into two disjoint sets, Ω1 and Ω2, such that for all
P , we have P [M(P ) ∈ Ω2] ≤ δ, and, for all Q adjacent to
P and all S ∈ Ω1,

log

(
P [M(P ) = S]

P [M(Q) = S]

)
≤ ϵ. ♢

The strength of differential privacy is quantified through
two parameters: ϵ and δ. The value of ϵ controls the amount
of information shared. In the literature, ϵ typically ranges
from 0.01 to 10 [26]. The value of δ is the probability that
more information is shared than should be allowed by ϵ, and
this value typically ranges between 0 and 0.05 [27]. Smaller
values of both ϵ and δ imply stronger privacy.

If a mechanism provides probabilistic (ϵ, δ)-differential
privacy, then it provides conventional (ϵ, δ)-differential pri-
vacy [25]. For a privacy mechanism M, conventional dif-
ferential privacy states that for any measurable subset A of
the range of M and all adjacent P and Q, we have the
inequality P [M (P ) ∈ A] ≤ eϵP [M (Q) ∈ A] + δ. It has
been shown that the conventional differential privacy guaran-
tees provided by probabilistic differential privacy are strictly
stronger than what is implied by the privacy parameters used
for probabilistic differential privacy [28, Section 4]. More
specifically, it is shown that providing (ϵ, δ)-probabilistic
differential privacy implies (ϵ, δ

′
)-conventional differential

privacy, where δ
′
< δ.

The level of privacy of a query (or several queries)
of data can be calculated using methods of composition.
While general sequences of private queries cause privacy to
weaken [15, Theorem 3.14], this weakening does not occur if
the queries are of disjoint subsets of the sensitive data [29].
Specifically, if the domain of the input to the mechanism
is partitioned into disjoint sets and these disjoint sets are
queried separately, then the ultimate privacy level is equal

to the worst of the privacy guarantees of each query. This is
formalized in the following lemma.

Lemma 1 (Parallel Composition [29]). Consider
a database D partitioned into disjoint sub-
sets D1, D2, . . . , DN , and suppose that there are
privacy mechanisms M1,M2, . . . ,MN , where Mi

is (ϵi, δi)-differentially private. Then the release of the
queries M1(D1),M2(D2), . . . ,MN (DN ) provides D
with (maxi∈[N ] ϵi,maxi∈[N ] δi)-differential privacy. □

We will use Lemma 1 to develop a differential privacy
mechanism for stochastic matrices in Section III.

D. Problem Statements

We now formally state the problems that we solve.

Problem 1. Develop a mechanism that provides (ϵ, δ)-
differential privacy to a stochastic matrix P .

Problem 2. Bound the expected difference of the entries of
the sensitive input P and a private output produced by the
mechanism developed in solving Problem 1.

Problem 3. Apply the developed mechanism to transition
matrices of Markov chains and develop a bound on the
distance between the private and non-private stationary
distributions to quantify the trade-off between the level of
privacy and accuracy.

We next solve Problem 1 and develop and analyze a
privacy mechanism to generate private stochastic matrices.

III. MATRIX DIRICHLET MECHANISM FOR
DIFFERENTIAL PRIVACY OF IDENTITY QUERIES

We begin this section by establishing a formal adjacency
definition for stochastic matrices, as well as outlining the
Matrix Dirichlet Mechanism in Section III-A. We then show
the differential privacy guarantees provided by the Matrix
Dirichlet Mechanism by computing δ in Section III-B and ϵ
in Section III-C. This solves Problem 1. Lastly, the accuracy
of private data is analyzed in Section III-D by bounding
the expected difference between the entries of a sensitive
stochastic matrix P and a private output produced by the
Matrix Dirichlet Mechanism. This solves Problem 2.

A. Matrix Dirichlet Mechanism

For the use of the Matrix Dirichlet Mechanism, we require
that row i of a sensitive stochastic matrix be in ∆

(η,η̄)
n,Wi

for
all i ∈ [n]; we emphasize that we let W in Definition 1 vary
for each row, and we use Wi to denote the set of indices
associated with row i. For convenience, we define a map

V : [n] → {W1, . . . ,Wn}, where V (i) =Wi. (4)

We now define the set of sensitive matrices we consider.

Definition 3 (Stochastic Matrices). Fix n ∈ N and, for
each i ∈ [n], fix a collection of indices Wi ⊆ [n − 1]. Fix
η, η̄ > 0. Let S(η,η̄)

n,V be the set of all stochastic matrices



whose ith row is in ∆
(η,η̄)
n,Wi

from Definition 1 for all i ∈ [n].
Then

S(η,η̄)
n,V =

{
P ∈ Sn | Pi ∈ ∆

(η,η̄)
n,V (i) for all i ∈ [n]

}
,

where V is from (4) and Pi is the ith row of P . ♢

We impose the following assumption on η and η̄ to
ensure that ratios of probability distributions over stochastic
matrices are bounded when showing that Matrix Dirichlet
Mechanism provides differential privacy.

Assumption 1. For S(η,η̄)
n,V in Definition 3, it holds that

η > 0, η̄ > 0, and η+ η̄ < 1
2 . It also holds that Wi ⊆ [n−1]

and |V (i)| = |Wi| ≥ 2 for all i ∈ [n]. ♢

Next, we establish a formal adjacency relation for stochas-
tic matrices.

Definition 4 (Adjacency). Fix n ∈ N, η > 0, and η̄ > 0.Let
Assumption 1 hold. Let P,Q ∈ S(η,η̄)

n,V be n × n stochastic
matrices, let Pi be the ith row of P , and let Pij be the
ithjth entry of P ; Qi and Qij are defined analogously. For
an adjacency parameter b ∈ (0, 1], P and Q are said to be
b-adjacent if, for all i ∈ [n], there exist j, k ∈ Wi such that
Pij ̸= 0, Pik ̸= 0, Piℓ = Qiℓ for all ℓ ̸= j, k, and ∥Pi −
Qi∥1 ≤ b. ♢

In words, this means that P and Q are adjacent if for
all i ∈ [n], the ith rows of P and Q differ in no more than
two entries and the 1-norm of this difference is bounded
by b. It was observed in Section II-C that the conventional
definition of adjacency allows for databases to differ in one
entry. Here, we must consider each row differing in two
entries because rows must sum to 1 and thus it is not possible
to change only a single entry. We now formalize the notion
of differential privacy for stochastic matrices.

Definition 5 (Differential Privacy for Stochastic Matrices).
Fix n ∈ N, η > 0, η̄ > 0, and b ∈ (0, 1]. let Assumption 1
hold. Let P , Q ∈ S(η,η̄)

n,V be two b-adjacent n× n stochastic
matrices. Let V be defined as in (4). A mechanism M :
S(η,η̄)
n,V → Sn is said to be (ϵ, δ)-differentially private, if,

for for any measurable subset A of the range of M and all
b-adjacent P , Q, we have

P [M (P ) ∈ A] ≤ eϵP [M (Q) ∈ A] + δ. ♢

Formally, the query we privatize is the identity query, i.e.,
we privatize a single stochastic matrix in Sn to enable it to
be shared. This approach is also called “input perturbation”
in the literature. We now introduce our Matrix Dirichlet
Mechanism that randomly maps elements of S(η,η̄)

n,V to Sn.

Definition 6 (Matrix Dirichlet Mechanism). The Matrix
Dirichlet Mechanism with parameter k ∈ R+ is denoted by
DirM , and it takes as input a stochastic matrix P ∈ S(η,η̄)

n,V ,

and outputs P̃ ∈ Sn via P̃ ∼ DirM (kP ), where

DirM (kP ) =



1
B(kP1)

n∏
j=1

X
kP1j−1
1j

1
B(kP2)

n∏
j=1

X
kP2j−1
2j

...
1

B(kPn)

n∏
j=1

X
kPnj−1
nj


. ♢

In words, the Matrix Dirichlet Mechanism takes as input
a sensitive stochastic matrix P and outputs a private matrix
P̃ . Specifically, P̃ is generated row by row based on the
rows of P. For a given i ∈ [n], the process of generating
P̃i is independent of P̃j for j ̸= i. Definition 6 shows that
the Matrix Dirichlet Mechanism outputs P̃ by applying (3)
to each row of the matrix, i.e., to Pi for each i ∈ [n].
The parameter k in Definition 6 can be tuned to adjust the
level of privacy provided. This will be used in Theorem 1 in
Section III-C to quantify the strength of differential privacy.
Given η and η̄, we apply the following assumption to the
privacy parameter k.

Assumption 2. The parameter k satisfies

k ≥ max

{
1

η
,

1

1− η − η̄

}
. ♢

Sections III-B and III-C will show that the Matrix Dirichlet
Mechanism from Definition 6 satisfies (ϵ, δ)−differential
privacy in Definition 5. For analysis, we interpret the rows
of the sensitive matrix P as a disjoint partition of the entire
sensitive matrix. Then, the Matrix Dirichlet Mechanism
can be viewed as privatizing the elements of this disjoint
partition independently, which is a parallel composition as
in Lemma 1. Thus, we analyze the privacy guarantees
afforded to a single row, then we use parallel composition
to make conclusions about the privacy guarantees for the
entire sensitive matrix. Specifically, we show that the Matrix
Dirichlet Mechanism provides conventional (ϵ, δ)-differential
privacy for stochastic matrices by:

• Computing the (ϵi, δi)-probabilistic differential privacy
guarantees from Definition 2 for Pi, for all i ∈ [n].

• Once (ϵi, δi)-probabilistic differential privacy for row
Pi is established, this implies that conventional differ-
ential privacy is satisfied for Pi, for all i ∈ [n].

• Using parallel composition from Lemma 1, we con-
clude that the Matrix Dirichlet Mechanism provides
conventional (ϵ, δ)-differential privacy for a stochastic
matrix P , where ϵ = maxi∈[n] ϵi and δ = maxi∈[n] δi.

B. Computing δ

In this section, we will compute δi for each row Pi.
We begin by analyzing the rows Pi for i ∈ [n], which
form a disjoint partition of the input P . We choose Wi in
Definition 1 such that it satisfies Assumption 1. We partition
the output space of the Matrix Dirichlet Mechanism applied



to a row Pi into two disjoint sets, Ωi
1 and Ωi

2. For all i ∈ [n],
fix γi ∈ (0, 1) and define the sets Ωi

1 and Ωi
2 as

Ωi
1 = {x ∈ ∆n | xj ≥ γi for all j ∈Wi} , (5)

and Ωi
2 = ∆n\Ωi

1. We use the following assumption for γi.

Assumption 3. Fix Wi ⊆ [n− 1]. Then γi ≤ 1
|Wi| . ♢

This assumption is easily satisfied since γi is a parameter
that we choose. Since Ωi

1 and Ωi
2 are disjoint sets, we have

P
[
M(k)

D (Pi) ∈ Ωi
2

]
= 1− P

[
M(k)

D (Pi) ∈ Ωi
1

]
. (6)

Using Definition 2, we will compute the row-wise probabil-
ities P[M(k)

D (Pi) ∈ Ωi
2], which will give δi for each row

Pi using probabilistic differential privacy. From (6), we first
compute P[M(k)

D (Pi) ∈ Ωi
1] for all i ∈ [n].

Lemma 2. Fix n ∈ N, η > 0 and η̄ > 0. For all i ∈ [n], fix
Wi ⊆ [n − 1], let S(η,η̄)

n,V be defined as in Definition 3, and
let Assumptions 1, 2, and 3 hold. For all i ∈ [n], define

Ari =

Xi ∈ Rri−1 |
∑

j∈[ri−1]

Xij ≤ 1,

Xij ≥ γi for all j ∈Wi

}
for all ri ≥ |Wi| + 1. Then, for the Matrix Dirichlet
Mechanism DirM with parameter k ∈ R+, we have that

P[M(k)
D (Pi) ∈ Ωi

1] =
1

B
(
kP̃Wi

) ∫
A|Wi|+1

f (Xij)
∏

j∈Wi

dXij ,

where f (Xij) equals

∏
j∈Wi

X
kPij−1
ij

1−
∑
j∈Wi

Xij

k(1−
∑

j∈Wi

Pij)−1

and P̃Wi ∈ ∆|Wi|+1 is equal to Pi after removing entries
with indices outside Wi and an entry equal to 1−

∑
j∈Wi

Pij

is appended as its final entry.

Proof. This follows from applying [23, Lemma 1] to each
row of P .

Lemma 2 shows that instead of an (n − 1)-fold in-
tegral of the Dirichlet PDF in (3), the computation of
P[M(k)

D (Pi) ∈ Ωi
1] can be reduced to a |Wi|-fold integral.

However, this result still depends on Pi. This cannot yet be
used to show that differential privacy is provided, because
doing so requires that privacy is guaranteed for any adjacent
input data, not just a specific input. Below, Lemma 3 shows
that P[M(k)

D (Pi) ∈ Ωi
1] is a log-concave function of Pi over

∆
(η,η̄)
n,Wi

. Using this, we will compute a value of δi that holds
for all Pi of interest.

Lemma 3. Fix n ∈ N, η > 0 and η̄ > 0. For all i ∈ [n], fix
Wi ⊆ [n− 1]. Let Assumptions 1, 2, and 3 hold. Let M(k)

D

be the Dirichlet distribution with parameter k from (3). Then

P[M(k)
D (Pi) ∈ Ωi

1] is a log-concave function of Pi over the
domain ∆

(η,η̄)
n,Wi

.

Proof. The result follows from applying [23, Lemma 2] to
each row of P .

From (6), an upper bound for P[M(k)
D (Pi) ∈ Ωi

2] can be
found by minimizing P[M(k)

D (Pi) ∈ Ωi
1], where

P
[
M(k)

D (Pi) ∈ Ωi
2

]
≤ 1− min

Pi∈∆
(η,η̄)
n,Wi

P
[
M(k)

D (Pi) ∈ Ωi
1

]
=: δi.

(7)
From Lemma 3, P[M(k)

D (Pi) ∈ Ωi
1] is a log-concave

function and can be easily minimized numerically over the
domain ∆

(η,η̄)
n,Wi

. Therefore, δi for each row Pi can be readily
obtained. This value of δi is for probabilistic differential
privacy from Definition 2. This implies that the same δi
can be used in conventional differential privacy from Defi-
nition 5. We know that the rows P1, . . . , Pn give a disjoint
partition of P . Using Lemma 1 we see that, for privacy of
the entire stochastic matrix as given in Definition 5, we have
δ = maxi∈[n] δi. Next, we will compute ϵ.

C. Computing ϵ

As above, we begin by analyzing a row Pi for some
i ∈ [n]. Fix η, η̄ ∈ (0, 1] satisfying Assumption 1, b ∈ (0, 1],
and Wi ⊆ [n − 1] for all i ∈ [n]. For a given k ∈ R+, we
must bound the following term to compute ϵi:

log

 P
[
M(k)

D (Pi) = Xi

]
P
[
M(k)

D (Qi) = Xi

]
 ,

where Xi ∈ Ωi
1 and Pi and Qi are b-adjacent in the sense

of Definition 4.
The following theorem establishes the differential privacy

guarantees of the Matrix Dirichlet distribution and hence
solves Problem 1.

Theorem 1. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n − 1] for all i ∈ [n]. Let Assumptions 1, 2, and 3
hold. Let the adjacency relation in Definition 4 hold. Then,
the Matrix Dirichlet Mechanism with parameter k ∈ R+,
defined in Definition 6 and denoted as DirM (kP ), is (ϵ, δ)-
differentially private, where

ϵ = log

(
beta (kη, k (1− η̄ − η))

beta
(
k
(
η + b

2

)
, k
(
1− η̄ − η − b

2

)))

+max
i∈[n]

kb

2
log

(
1− (|Wi| − 1) γi

γi

)
,

and δ = 1−max
i∈[n]

min
Pi∈∆

(η,η̄)
n,Wi

P
[
M(k)

D (Pi) ∈ Ωi
1

]
.

Proof. We begin by evaluating ϵi for a row Pi using prob-
abilistic differential privacy. Fix an arbitrary i ∈ [n]. Let
ℓ,m ∈Wi be the indices from Definition 4 in which Pi and



Qi can differ. Using Definition 6 and (3), we find that

log

 P
[
M(k)

D (Pi) = Xi

]
P
[
M(k)

D (Qi) = Xi

]


= log


B (kQi)

n∏
j=1

X
kPij−1
ij

B (kPi)
n∏

j=1

X
kQij−1
ij


= log

(
Γ (kQiℓ) Γ (kQim)XkPiℓ−1

iℓ XkPim−1
iℓ

Γ (kPiℓ) Γ (kPim)XkQiℓ−1
iℓ XkQim−1

iℓ

)

= log

(
Γ (kQiℓ) Γ (kQim)

Γ (kPiℓ) Γ (kPim)
·
(
Xiℓ

Xim

)k(Piℓ−Qiℓ)
)
. (8)

We find (8) using adjacency, where Pi and Qi are rows of
b-adjacent stochastic matrices. Therefore Piℓ+Pim = Qiℓ+
Qim. For the sake of brevity, we let G = Γ(kQiℓ)Γ(kQim)

Γ(kPiℓ)Γ(kPim) .
To calculate ϵ, we must upper bound (8). To that end, let

ν = max
Pi,Qi,Xi∈Rn

log

(
G ·
(
Xiℓ

Xim

)k(Piℓ−Qiℓ)
)

(9)

subject to |Piℓ −Qiℓ| ≤
b

2
Piℓ + Pim = Qiℓ +Qim

Piℓ + Pim ≤ 1− η̄

P(iℓ,im) ∈ [η, 1− η̄ − η]2

Q(iℓ,im) ∈ [η, 1− η̄ − η]2

X(iℓ,im) ∈ [γi, 1− (|Wi| − 1)γi]
2.

Let C denote the set of feasible points of the optimization
problem. The first two constraints enforce adjacency, while
the others ensure that Pi, Qi ∈ ∆

(η,η̄)
n,Wi

and Xi ∈ Ωi
1. By

sub-additivity of the maximum, we find

ν ≤ max
Pi,Qi,Xi∈C

log (G) + max
Pi,Qi,Xi∈C

(
Xiℓ

Xim

)k(Piℓ−Qiℓ)

.

Let

ν1 = max
Pi,Qi,Xi∈C

(
Xiℓ

Xim

)k(Piℓ−Qiℓ)

(10)

ν2 = max
Pi,Qi,Xi∈C

log(G). (11)

To bound ν1, we use the fact that |Piℓ − Qiℓ| ≤ b
2 from

adjacency in Definition 4, as well as the inequalities Xiℓ ≤
(1 − (|Wi| − 1))γi and Xim ≥ γi, which follow from the
definition of Ω1 in (5). Applying these bounds to (10) gives

ν1 ≤ max
Pi,Qi,Xi∈C

|k (Piℓ −Qiℓ)| ·
∣∣∣∣log( Xiℓ

Xim

)∣∣∣∣
≤ kb

2
log

(
1− (|Wi| − 1) γi

γi

)
. (12)

We now bound ν2 in (11). Let ci = Piℓ + Pim = Qiℓ +
Qim, and replace Qim and Pim with ci − Qiℓ and ci −

Piℓ, respectively. This encodes the constraints imposed by C
in (11), allowing us to optimize over R. Let

ν2 = max
Piℓ,Qiℓ,ci∈R

log (G)

subject to |Piℓ −Qiℓ| ≤
b

2
ci ∈ [2η, 1− η̄]

Piℓ ∈ [η, 1− η̄ − η]

Qiℓ ∈ [η, 1− η̄ − η] .

To compute ν2, [23] shows that the Karush-Kuhn-Tucker
(KKT) conditions of optimality are not satisfied in the
interior of the set of feasible points, and we only need to
consider the extreme (Piℓ, Qiℓ)’s in the set{(

η +
b

2
, η

)
, (1− η̄ − η, 1− η̄ − η) ,(

η, η +
b

2

)
,

(
1− η̄ − η, 1− η̄ − η − b

2

)}
. (13)

These points are the vertices of the feasible region C. Note
that since beta(a, b) = beta(b, a), the points in the first row
give equal positive objectives, and the points in the second
row give equal negative objectives. Therefore, we can choose
the first point in (13) to find

ν2 = log

(
beta (kη, k (1− η̄ − η))

beta
(
k
(
η + b

2

)
, k
(
1− η̄ − η − b

2

))) . (14)

From (9)-(11), we see that ϵi ≤ ν1 + ν2. Substituting ν1
from (12) and ν2 from (14) gives

ϵi ≤ log

(
beta (kη, k (1− η̄ − η))

beta
(
k
(
η + b

2

)
, k
(
1− η̄ − η − b

2

)))

+
kb

2
log

(
1− (|Wi| − 1) γi

γi

)
.

We use δi from (7), which is

δi = 1− min
Pi∈∆

(η,η̄)
n,Wi

P
[
M(k)

D (Pi) ∈ Ωi
1

]
.

We have shown that the Matrix Dirichlet Mechanism pro-
vides (ϵi, δi)-probabilistic differential privacy for Pi for all
i ∈ [n]. This implies that conventional differential privacy is
provided for every Pi as well. When we apply DirM to P ,
we see that, for all i ∈ [n], the output row P̃i depends only
on the input row Pi. Thus, each row of the private output
matrix is equivalent to a query on a disjoint subset of the
sensitive input matrix. Therefore, by Lemma 1, the Matrix
Dirichlet Mechanism provides (ϵ, δ)-differential privacy to P
with ϵ = maxi∈[n] ϵi and δ = maxi∈[n] δi.

We have established the (ϵ, δ)-differential privacy guaran-
tees provided by the Matrix Dirichlet Mechanism. Generally,
we wish to implement privacy in a way that preserves the
usefulness of private data. To that end, we next quantify the
trade-off between privacy and accuracy for our mechanism.



D. Accuracy

Through providing (ϵ, δ)-differential privacy, the Matrix
Dirichlet Mechanism randomizes the entries of the matrix
P . Here, we solve Problem 2 and provide an upper bound
on how much privacy perturbs the individual entries of P .

Theorem 2. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n − 1] for all i ∈ [n]. Let Assumptions 1, 2, and
3 hold. Let the adjacency relation in Definition 4 hold. Fix
a sensitive stochastic matrix P ∈ S(η,η̄)

n,V and a parameter
k ∈ R+. Let P̃ ∼ DirM (kP ), where the Matrix Dirichlet
Mechanism DirM is given in Definition 6. Then

E
[
|Pij − P̃ij |

]
≤ Γ (k) 21−k

Γ(k/2)2k
, (15)

and

E
[
|Pij − P̃ij |2

]
≤ k

4 (k2 + k)
. (16)

Proof. The expectation of error over the randomness of the
Matrix Dirichlet Mechanism takes the form

E
[
|Pij − P̃ij |

]
=

∫ 1

0

|Pij − x|x
kPij−1(1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx

=

∫ Pij

0

(Pij − x)
xkPij−1(1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx

−
∫ 1

Pij

(Pij − x)
xkPij−1(1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx.

Expanding, we see that

E
[
|Pij − P̃ij |

]
= Pij

∫ Pij

0

xkPij−1(1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx

−
∫ Pij

0

xkPij (1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx

− Pij

∫ 1

Pij

xkPij−1(1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx

+

∫ 1

Pij

xkPij (1− x)k(1−Pij)−1

beta(kPij , k(1− Pij))
dx. (17)

From the properties of the regularized incomplete beta func-
tion in (2), we have∫ z

0

xa−1(1− x)b−1dx = beta(a, b)Iz(a, b),

and ∫ 1

z

xa−1(1− x)b−1dx = beta(a, b)(1− Iz(a, b)).

Applying these properties to the integrals in (17) gives

E
[
|Pij − P̃ij |

]
= PijIPij (kPij , k(1− Pij))

− beta(kPij + 1, k(1− Pij))

beta(kPij , k(1− Pij))
IPij

(kPij + 1, k(1− Pij))

− Pij(1− IPij (kPij , k(1− Pij)))

+
beta(kPij + 1, k(1− Pij))

beta(kPij , k(1− Pij))

· (1− IPij (kPij + 1, k(1− Pij))).

Factoring and collecting like terms we find

E
[
|Pij − P̃ij |

]
= Pij

(
2IPij

(kPij , k(1− Pij))− 1
)

+
beta(kPij + 1, k(1− Pij))

beta(kPij , k(1− Pij))
(1−2IPij (kPij+1, k(1−Pij)).

Using the gamma function representation of the beta function
from (1) we have

E
[
|Pij − P̃ij |

]
= Pij

(
2IPij (kPij , k(1− Pij))− 1

)
(18)

+
Γ(kPij + 1)Γ(k)

Γ(kPij)Γ(k + 1)

(
1− 2IPij

(kPij + 1, k(1− Pij)) .

We know that Γ (k + 1) = kΓ (k), and therefore

Γ(kp+ 1)Γ(k)

Γ(k + 1)Γ(kp)
=
kpΓ(kp)Γ(k)

kΓ(k)Γ(kp)
= p.

Substituting this result into (18) gives

E
[
|Pij − P̃ij |

]
= 2Pij(IPij

(kPij , k(1− Pij))

− IPij
(kPij + 1, k(1− Pij)). (19)

From [30], the regularized incomplete beta function satisfies

Iz(a, b) = Iz(a+ 1, b) +
za(1− z)b

a · beta(a, b)
.

Applying this to (19) gives

E
[
|Pij − P̃ij |

]
= 2

P
kPij

ij (1− Pij)
k(1−Pij)

k · beta(kPij , k(1− Pij))
. (20)

The maximum value of the right-hand side of (20) occurs at
Pij = 0.5. Therefore

E
[
|Pij − P̃ij |

]
≤ 2 · (0.5)k

k · beta(kPij , k(1− Pij))
.

Using the gamma function representation of the beta function
from (1) gives

E
[
|Pij − P̃ij |

]
≤ Γ (k) 21−k

Γ(k/2)2k
.

This completes the proof for (15).



Next, we will prove (16). By definition,

E
[
|Pij − P̃ij |2

]
=

∫ 1

0

(x− Pij)
2 x

kPij−1 (1− x)
k(1−Pij)−1

beta (kPij , k (1− Pij))
dx

=

∫ 1

0

xkPij+1 (1− x)
k(1−Pij)−1

beta (kPij , k (1− Pij))
dx

− 2Pij

∫ 1

0

xkPij (1− x)
k(1−Pij)−1

beta (kPij , k (1− Pij))
dx

+ Pij2

∫ 1

0

xkPij−1 (1− x)
k(1−Pij)−1

beta (kPij , k (1− Pij))
dx.

Using the gamma function representation of the beta function
from (1) gives

E
[
|Pij − P̃ij |2

]
=

Γ (kPij + 2)Γ (k)

Γ (k + 2)Γ (kPij)

− 2Pij

[
Γ (kPij + 1)Γ (k)

Γ (k + 1)Γ (kPij)

]
+ P 2

ij .

We simplify using the fact Γ (k + 1) = kΓ (k), which gives

E
[
|Pij − P̃ij |2

]
=

(kPij + 1)(kPij)(Γ(kPij))Γ(k)

(k + 1)(k)Γ(kPij)Γ(k + 1)

− 2Pij

[
kPijΓ(kPij)Γ(k)

kΓ(kPij)Γ(k)

]
.

Combining like terms, we find

E
[
|Pij − P̃ij |2

]
=
kPij − P 2

ijk

k2 + k
. (21)

The maximum value of (21) occurs at Pij = 0.5. Therefore,

E
[
|Pij − P̃ij |2

]
≤ k

4 (k2 + k)
.

We now consider a numerical example to illustrate The-
orem 2. The sensitive matrix is a 10× 10 stochastic matrix
in which each entry is 0.1. Using an adjacency parameter
b = 0.05, a value of γi = 0.001, and Wi so that |Wi| = 4
for all i ∈ [n], we apply privacy in the range ϵ ∈ [2.5, 22.5]
and empirically quantify the accuracy from (15) as a function
of ϵ. Figure 1 was generated by considering k ∈ [10, 100].
For a given value of k, the values of ϵ and δ are calculated
and 10, 000 private responses are simulated. To compute the
empirical average of the entry-wise error, we first average
the error over the entries of each private response, then
we average over the 10, 000 responses for the given level
of privacy. Figure 1 shows that the upper bound calculated
in (15) and the simulated error both monotonically decrease
as ϵ increases. Bounding the perturbation of the individual
entries of P due to privacy is essential for accurate analysis
and implementation of privacy, and Figure 1 shows that
Theorem 2 provides an accurate bound on this error.

Solving Problem 2 provides a means of extending the
analysis of privatized stochastic matrices to Markov chains,
which are widely used models in systems and control theory.

5 10 15 20
ǫ

0.000
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0.050
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|P

ij
−

P̃
ij

|]

Actual
Upper Bound

Fig. 1. Average absolute difference between entries of a stochastic matrix
P and the private matrix P̃ over 10, 000 applications of DirM from
Definition 6 as a function of privacy strength. The simulated value is
compared to the upper bound presented in (15). For all values of ϵ in this
plot, we have 0 < δ ≤ 0.027.

The stationary distribution of a Markov chain is one of its
fundamental properties and often used in the analysis of
Markov chains. Therefore, we will next bound the perturba-
tion of the stationary distribution as a function of the strength
of privacy.

IV. STATIONARY DISTRIBUTION PERTURBATION BOUND

In this section, we solve Problem 3 by quantifying how
the implementation of privacy using the Matrix Dirichlet
Mechanism alters the stationary distribution of a finite,
irreducible, homogeneous Markov chain (see Section II-B
for a discussion of these terms). The change between the
private and non-private stationary distribution of a transition
probability matrix can be bounded using perturbation theory.
We first define the matrix A as A = I − P , where I is the
identity matrix and P is the transition probability matrix.

Using A, we can solve for the fundamental matrix of
the Markov chain, Z, which is defined as Z = (A −
1nπT )−1, where π is the stationary distribution of the
Markov chain. The fundamental matrix Z always exists for a
finite, irreducible, homogeneous Markov chain. Suppose the
transition probability matrix P is perturbed to P̃ using the
Matrix Dirichlet Mechanism. The stationary distribution of
the perturbed matrix is denoted as π̃. We use the following
bound for the distance between the private and non-private
stationary distribution.

Lemma 4 (Stationary Distribution Perturbation Bound [31]).
The norm-wise perturbation bound of the stationary distri-
bution of a finite, homogeneous, irreducible Markov chain is
of the form:

∥π − π̃∥1 ≤ ∥Z∥1 ∥P − P̃∥1. (22)

□

The privatized transition probability matrix, P̃ , is gener-
ated by randomizing the original transition probability matrix
using the Matrix Dirichlet Mechanism from Definition 6. We
therefore now bound E [∥π − π̃∥1].

Theorem 3. Fix n ∈ N, η > 0, η̄ > 0, b ∈ (0, 1], and
Wi ⊆ [n−1] for all i ∈ [n]. Let Assumptions 1, 2, and 3 hold.
Fix n ∈ N and consider a stochastic matrix P ∈ S(η,η̄)

n,V that
corresponds to a finite, homogeneous, irreducible Markov



chain. Let π denote its stationary distribution. Let P̃ ∼
DirM (kP ) be its privatized form with stationary distribution
π̃. Then the expected distance between the private and non-
private stationary distribution can be upper bounded as

E [∥π − π̃∥1] ≤ ∥Z∥1 ·

{
nΓ (k) 21−k

Γ (k/2)
2
k

+

(
n− 1

n

) 1
2

·
{

n2k

4(k2 + k)
−

max
i

[
4
η2k[1−η̄−(|Wi|−1)η] · [η̄ + (|Wi| − 1)η]2k(1−η)

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2

]} 1
2

}
,

where Z = (A−1nπT )−1 and |Wi| is the number of indices
in Wi for a given row Pi.

Proof. The matrix 1-norm is the maximum absolute col-
umn sum of its argument. The 1-norm of the perturba-
tion induced by the Matrix Dirichlet Mechanism can be
expressed as ∥P − P̃∥1 = maxj∈[n]

∑n
i=1|Pij − P̃ij |. The

perturbation of P by the Matrix Dirichlet Mechanism is a
random variable. As a result, we begin this proof by taking
the expected value of both sides of (22) in Lemma 4 to find

E [∥π − π̃∥1] ≤ ∥Z∥1 E

[
max
j∈[n]

n∑
i=1

|Pij − P̃ij |

]
. (23)

Now we bound the expectation of the maximum of a
collection of random variables. Let X1, X2, . . . , XN (2 ≤
N < ∞) be an arbitrary sequence of real-valued random
variables with finite mean and variance. The bound in [32,
Theorem 2.1] gives

E
[
max
j∈[N ]

Xj

]
≤ max

j∈[N ]
E[Xj ] +

N − 1

N

N∑
j=1

Var[Xj ]

 1
2

.(24)

Now let Xj =
∑n

i=1|Pij−P̃ij |. Then applying (24) to (23)
with N = n gives

E

[
max
j∈[n]

n∑
i=1

|Pij − P̃ij |

]
≤ max

j∈[n]
E

[
n∑

i=1

|Pij − P̃ij |

]

+

(
n− 1

n

) 1
2

·


n∑

j=1

Var

[
n∑

i=1

|Pij − P̃ij |

]
1
2

. (25)

Applying the upper bound from (15) to the first term in (25),
we can further simplify the above equation as

E

[
max
j∈[n]

n∑
i=1

|Pij − P̃ij |

]
≤ nΓ (k) 21−k

Γ (k/2)
2
k

+

(
n− 1

n

) 1
2

·


n∑

j=1

Var

[
n∑

i=1

|Pij − P̃ij |

]
1
2

. (26)

We now focus on the variance term in brackets in (26). The
sum inside the variance is over the rows of P , which are

randomized in a mutually independent way. Thus, the expres-
sion inside the variance is the sum of independent random
variables and is equivalent to the sum of the variances of the
individual terms. Therefore,

n∑
j=1

Var

[
n∑

i=1

|Pij − P̃ij |

]
=

n∑
i=1

n∑
j=1

Var[|Pij − P̃ij |].(27)

For a random variable X we have Var[X] = E[X2]−E[X]2.
Applying this fact to (27) gives

n∑
i=1

n∑
j=1

Var[|Pij − P̃ij |] = (28)

n∑
i=1


n∑

j=1

E
[
|Pij − P̃ij |2

]
−

n∑
j=1

E
[
|Pij − P̃ij |

]2 .

To upper bound the first term in (28), we apply (16) from
Theorem 2, which gives

n∑
i=1

n∑
j=1

Var[|Pij − P̃ij |]

≤
n∑

i=1

nk

4(k2 + k)
−

n∑
i=1

n∑
j=1

E
[
|Pij − P̃ij |

]2
. (29)

Next, we substitute (20) for the second term, and upper
bound the sum of the first term in (29) to find

n∑
i=1

n∑
j=1

Var[|Pij − P̃ij |]

≤ n2k

4(k2 + k)
−

n∑
i=1

n∑
j=1

4
P

2kPij

ij (1− Pij)
2k(1−Pij)

k2 · beta(kPij , k(1− Pij))2
.

(30)

We now focus on lower bounding the second term in (30).
By definition, for any j ∈ Wi we have Pij ≥ η. All other
Pij ≥ 0. Therefore, we solely examine Pij for j ∈ Wi to
find a lower bound, where

n∑
j=1

4
P

2kPij

ij (1− Pij)
2k(1−Pij)

k2 · beta(kPij , k(1− Pij))2

≥
∑
j∈Wi

4
P

2kPij

ij (1− Pij)
2k(1−Pij)

k2 · beta(kPij , k(1− Pij))2
. (31)

From Assumption 1, we know that η < 1. Definition 1
implies that for Pij with j ∈Wi we have

η ≤ Pij ≤ 1− η̄ − (|Wi| − 1)η, (32)

and
η̄ + (|Wi| − 1)η ≤ 1− Pij ≤ 1− η. (33)

Next, we find a lower bound for the numerator and an upper
bound for the denominator of (31). Making the numerator as
small as possible by substituting (32) and (33), we find

P
2kPij

ij (1− Pij)
2k(1−Pij) ≥ η2k[1−η̄−(|Wi|−1)η]

· [η̄ + (|Wi| − 1)η]2k(1−η). (34)



Next, we lower bound the denominator of (31). To do so, we
show that beta(a, b) is monotonically decreasing in a and b,
where a, b > 0. We begin by finding the partial derivatives
of beta(a, b) with respect to a and b, namely

∂

∂a
beta(a, b) = beta(a, b)(ψ(a)− ψ(a+ b)) (35)

∂

∂b
beta(a, b) = beta(a, b)(ψ(b)− ψ(a+ b)), (36)

where ψ(x) is the digamma function. Note that beta(a, b)
is strictly positive for a, b > 0. From [33], ψ(x) is strictly
increasing for x > 0, which implies ψ(a) − ψ(a + b) < 0
and ψ(b) − ψ(a + b) < 0. Thus, (35) and (36) are strictly
negative and beta(a, b) is monotonically decreasing in a and
b. We apply this property to the denominator of (31), where

k2 · beta(kPij , k(1− Pij))
2 ≤

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2. (37)

Substituting (34) and (37) into (31), we find

∑
j∈Wi

4
P

2kPij

ij (1− Pij)
2k(1−Pij)

k2 · beta(kPij , k(1− Pij))2
≥

∑
j∈Wi

4
η2k[1−η̄−(|Wi|−1)η] · [η̄ + (|Wi| − 1)η]2k(1−η)

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2
.

(38)

Next, we substitute (38) into (30), which gives
n∑

i=1

n∑
j=1

Var[|Pij − P̃ij |] ≤
n2k

4(k2 + k)
− (39)

n∑
i=1

∑
j∈Wi

4
η2k[1−η̄−(|Wi|−1)η] · [η̄ + (|Wi| − 1)η]2k(1−η)

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2
.

To upper bound (39) we lower bound the sum in the second
term. A sum of non-negative terms is lower bounded by any
one of the summands. Taking the single largest value gives
the tightest lower bound of this form, and this results in

n∑
i=1

n∑
j=1

Var[|Pij − P̃ij |] ≤
n2k

4(k2 + k)
− (40)

max
i

[
4
η2k[1−η̄−(|Wi|−1)η] · [η̄ + (|Wi| − 1)η]2k(1−η)

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2

]
.

Next, we substitute the result from (40) into (26) to find

E

[
max
j∈[n]

n∑
i=1

|Pij − P̃ij |

]
≤ nΓ (k) 21−k

Γ (k/2)
2
k

+

(
n− 1

n

) 1
2

(41)

·
{

n2k

4(k2 + k)
−

max
i

[
4
η2k[1−η̄−(|Wi|−1)η] · [η̄ + (|Wi| − 1)η]2k(1−η)

k2 · beta(kη, k[η̄ + (|Wi| − 1)η])2

]} 1
2

.

To conclude the proof, we substitute (41) into (23) to find
the expression of interest.

The result presented in Theorem 3 provides us with a
quantitative measure of how much the computation of the
stationary distribution is expected to change as a function
of the strength of privacy. The accuracy of the stationary
distribution is crucial in Markov chain models, especially
when predicting the future behavior of a Markov chain, and
we illustrate this on a practical example in the next section.

V. SIMULATION RESULTS

This section presents simulation results. We consider a
Markov chain model of a traffic system generated from
the Annual Average Daily Traffic (AADT) of some of the
major streets in Gainesville, Florida from 2021 [34]. A
trajectory produced by this Markov chain represents a user’s
route through Gainesville, and such routes are sensitive. For
example, they may reveal a user’s place of work, their home,
or other private activities conducted in their daily routine.
We implement differential privacy for this system using the
Matrix Dirichlet Mechanism.

The AADT data used to compute the transition proba-
bilities was provided by Florida Traffic Online, a mapping
application that shows historical traffic count site locations
and data. AADT numbers present the average daily traffic
volume on segments of roads over the course of one year.
The transition probabilities for the Markov chain model
were found using frequency analysis, where the transition
probability from one state to another feasible state is equal
to the number of times a driver transitions from the first state
to the second state divided by the total number of times a
driver transitions away from the first state.

The Markov chain model we construct contains 32 states.
In this example, the support of the Markov chain model is
assumed to be public knowledge. For example, any outside
observer can conclude that there is no probability of tran-
sitioning from Old Archer Rd to SW 2nd Ave simply by
observing the layout of the streets. To this end, the entries
in P equal to 0 are not perturbed using the Matrix Dirichlet
Mechanism. Analysis in this example requires the input to
be in the interior of the unit simplex. To accommodate this,
we define a mechanism on ∆|Si|, where |Si| is the number
of non-zero entries in row i.

As ϵ shrinks and privacy strengthens, the entries of P are
perturbed more by privacy, which will affect predictions of
routes taken by users. The first transition probability matrix
P was derived directly from the AADT traffic statistics
and is treated as the sensitive data. The second transition
probability matrix P̃1 was generated by privatizing P using
DirM with a parameter k = 9.87 corresponding to ϵ = 1.16
and δ = 0.011. The final transition probability matrix P̃2

was generated by privatizing P using DirM with a parameter
k = 98.7 corresponding to ϵ = 11.12 and δ = 0.019. For
both applications of DirM , an adjacency parameter b = 0.025
was selected. We fix η = 0.10 and η̄ = 0.051. The set Wi

was selected as the indices of the n − 1 largest non-zero



SW 2nd Ave

SW 16th Ave

Initial State

S
W

 1
3
th

 S
t

S
W

 3
4
th

 S
t

S
W

 2
3
rd

 T
er

r

S
W

 6
th

 S
t

S
 M

a
in

 S
t

SW 2nd Ave

SW 4th Ave

SW Depot  Ave

W University Ave

SW Arch
er R

d

Old 
Arch

er 
Rd

SW Williston Rd

Fig. 2. A random walk over 10 states of the Markov chain model of
Gainesville, Florida conducted for varying levels of privacy. As ϵ increases,
the sampled path becomes more similar to the random walk without privacy.
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Fig. 3. Using an adjacency parameter of b = 0.025 and γi = 0.001
for all i ∈ [n], the expected value of the error between the private and
non-private stationary distribution was found over 10, 000 applications of
the Matrix Dirichlet Mechanism at each value of ϵ ∈ [0.5, 9], with 0 <
δ ≤ 0.011. As ϵ increases, there is a clear decreasing trend in this error,
which shows that weaker privacy provides greater accuracy for the stationary
distribution, and vice versa.

entries in each row of P , and we set γi = 0.001 for all
i ∈ [n].

A random walk for 10 steps was then performed for each
of the 3 transition probability matrices and the results are
illustrated in Figure 2. Figure 2 shows that as ϵ increases
and the strength of privacy decreases, the random walk will
tend to have similar state transitions to those in the original
transition probability matrix P . This is intuitive since as ϵ
increases, the strength of privacy protections decreases, and
P is perturbed by a smaller amount.

We now quantify the accuracy of the perturbed transition
probability matrices by evaluating their corresponding sta-
tionary distributions. Figure 3 shows the relationship between
the strength of privacy and the 1-norm of the difference
between the private and non-private stationary distributions.
Figure 3 was generated by considering k ∈ [10, 200]. For
a given value of k, the values of ϵ and δ were calculated
and 10, 000 private matrices were generated. The stationary
distribution π̃ was calculated for each one. To compute
the empirical average of the 1-norm difference, the average
stationary distribution over the 10, 000 private responses
was calculated and subtracted from the original stationary
distribution, π.

Figure 3 shows that the simulated error monotonically
decreases as privacy increases. Figure 3 shows a maximum

expected error of 0.485 corresponding to ϵ = 0.5 and a
minimum error of 0.101 corresponding to ϵ = 8. With respect
to the maximum possible error (which is 2), the private
stationary distribution error ranges from 5.05% to 24.25%
under typical privacy conditions. This error is spread over
the 32 entries of the stationary distribution implying that the
error associated with a single state is quite small, even for
strong privacy guarantees.

VI. CONCLUSION

This paper introduced the Matrix Dirichlet Mechanism
as a means of providing differential privacy to stochastic
matrices. We proved that this mechanism satisfies conven-
tional differential privacy guarantees, and quantified the error
induced in private stochastic matrices as a function of the
strength of privacy provided. We then applied the Matrix
Dirichlet Mechanism to Markov chains and calculated the
distance between the stationary distribution of the sensitive
stochastic matrix and the stationary distribution of its priva-
tized form. Future work includes an extension of the Matrix
Dirichlet Mechanism to provide differential privacy to doubly
stochastic matrices.
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