
1

Differentially Private Formation Control: Privacy
and Network Co-Design

Calvin Hawkins and Matthew Hale∗

Abstract—As multi-agent systems proliferate, there is increas-
ing demand for coordination protocols that protect agents’
sensitive information while allowing them to collaborate. To help
address this need, this paper presents a distributed differentially
private formation control framework. Agents’ state trajectories
are protected using differential privacy, which is a statistical no-
tion of privacy that protects data by adding noise to it. We provide
a private formation control implementation and analyze tradeoffs
between privacy level, system performance, and connectedness
of the network’s communication topology. These trade-offs are
used to formulate a co-design optimization problem to select
the optimal communication topology and privacy parameters for
a network running differentially private formation control. We
prove that this problem is convex, and thus it can be solved
efficiently with standard computational tools. We also calculate
a closed form solution for the steady-state error covariance
matrix for private formations and analyze how the lack of a
central aggregator affects performance of differentially private
formation control. Simulation results illustrate the scalability of
our proposed privacy/network co-design problem to large multi-
agent networks.

I. INTRODUCTION

Multi-agent systems, such as robotic swarms and social
networks, require agents to share information to collaborate.
In some cases, the information shared between agents may be
sensitive. For example, self-driving cars share location data
to be routed to a destination. Geo-location data and other
data streams can be quite revealing about users and sensitive
data should be protected, though this data must still be useful
for multi-agent coordination. Thus, privacy in multi-agent
control must simultaneously protect agents’ sensitive data
while guaranteeing that privatized data enables the network
to achieve a common task.

This type of privacy has recently been achieved using differ-
ential privacy. Differential privacy comes from the computer
science literature, where it was originally used to protect
sensitive data when databases are queried [1], [2]. Differential
privacy is appealing because it is immune to post-processing
and robust to side information [1]. These properties mean
that privacy guarantees are not compromised by performing
operations on differentially private data, and that they are not
weakened by much by an adversary with additional informa-
tion about data-producing agents [3].

Recently, differential privacy has been applied to dynamic
systems [4]–[12]. One form of differential privacy in dynamic
systems protects sensitive trajectory-valued data, and this is

∗The authors are with the Department of Mechanical and Aerospace
Engineering, Herbert Wertheim College of Engineering, University of Florida.
Emails: {calvin.hawkins,matthewhale}@ufl.edu. This work was
supported by AFOSR under Grant #FA9550-19-1-0169 and by NSF CAREER
grant #1943275.

the notion of differential privacy used in this paper. Privacy of
this form ensures that an adversary is unlikely to learn much
about the state trajectory of a system by observing its outputs.
In multi-agent control, this lets an agent share its outputs with
other agents while protecting its state trajectory from those
agents and eavesdroppers [4]–[7].

In this paper, we develop a framework for private multi-
agent formation control using differential privacy. Formation
control is a well-studied network control problem that can
represent, e.g., robots physically assembling into geometric
shapes or non-physical agents maintaining relative state off-
sets. For differential privacy, agents add privacy noise to their
states before sharing them with other agents. The other agents
use privatized states in their update laws, and then this process
repeats at every time step.

Adding privacy noise makes this problem equivalent to a
certain consensus protocol with measurement noises. This pa-
per focuses on private formation control, though the methods
presented can be used to design and analyze other private
consensus-style protocols, which underlie many multi-agent
control and optimization algorithms [13], [14]. The private
formation control protocol can be implemented in a completely
distributed manner, and, contrary to some other privacy ap-
proaches, it does not require a central coordinator.

Privacy is often a post-hoc concern in control systems that
is incorporated only after a network and/or a controller is
designed, which can make it difficult to implement. There-
fore, this paper formulates a co-design problem to design a
network topology and a differential privacy implementation
together. This problem accounts for (i) the strength of privacy
protections, (ii) the formation control error induced by privacy,
and (iii) the topology of the network that runs the formation
control protocol. It is shown that this problem is convex and
thus solvable with conventional methods. The benefits of co-
design have been illustrated for problems of security in control
systems [15] and the co-design problem in this paper brings
these same benefits to problems in privacy.

A preliminary version of this paper appears in [16]. This
paper adds the co-design problem, closed-form solution to
the steady-state formation control error covariance, new sim-
ulations, and proofs of all results. The rest of this paper
is organized as follows. Section II gives graph theory and
differential privacy background. Section III provides formal
problem statements. In Section IV, we implement differential
privacy in the formation control protocol and bound formation
error in terms of system parameters. Section V compares our
decentralized implementation to one with a trusted central
coordinator. Section VI finds a closed-form solution for the
steady-state error covariance matrix of the private formation

2

control protocol. In Section VII, we define, analyze, and pro-
vide methods to solve the privacy/network co-design problem.
Next, Section VIII provides simulation results, and Section IX
provides concluding remarks.

II. BACKGROUND AND PRELIMINARIES

In this section we briefly review the required background
on graph theory and differential privacy.

A. Graph Theory Background

A graph G = (V,E) is defined over a set of nodes V and
edges are contained in the set E. For N nodes, V is indexed
over {1, ..., N}. The edge set of G is a subset E ⊆ V × V ,
where the pair (i, j) ∈ E if nodes i and j share a connection
and (i, j) /∈ E if they do not. This paper considers undirected,
weighted, simple graphs. Undirectedness means that an edge
(i, j) ∈ E is not distinguished from (j, i) ∈ E. Simplicity
means that (i, i) /∈ E for all i ∈ V . Weightedness means that
the edge (i, j) ∈ E has a weight wij = wji > 0. Of particular
interest are connected graphs.

Definition 1 (Connected Graph): A graph G is connected
if, for all i, j ∈ {1, ..., N}, i 6= j, there is a sequence of edges
one can traverse from node i to node j. 4

This paper uses the weighted graph Laplacian, which is de-
fined with weighted adjacency and weighted degree matrices.
The weighted adjacency matrix A(G) ∈ RN×N of G is defined
element-wise as

A(G)ij =

{
wij (i, j) ∈ E
0 otherwise

.

Because we only consider undirected graphs, A(G) is sym-
metric. The weighted degree of node i ∈ V is defined as di =∑
j|(i,j)∈E wij . The maximum degree is dmax = maxi di.

The degree matrix D(G) ∈ RN×N is the diagonal matrix
D(G) = diag(d1, ..., dN). The weighted Laplacian of G is
then defined as L(G) = D(G)−A(G).

Let λk(·) be the kth smallest eigenvalue of a matrix. By
definition, λ1(L(G)) = 0 for all graph Laplacians and

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ · · · ≤ λN (L(G)).

The value of λ2(L(G)) plays a key role in this paper.
Definition 2 (Algebraic Connectivity [17]): The algebraic

connectivity of a graph G is the second smallest eigenvalue of
its Laplacian and G is connected if and only if λ2(L(G)) > 0.
4

Node i’s neighborhood set N(i) is the set of all agents that
agent i communicates with, denoted N(i) = {j | (i, j) ∈ E}.

B. Differential Privacy Background

This section provides a brief description of the differential
privacy background needed for the remainder of the paper.
More complete expositions can be found in [4], [18]. Overall,
the goal of differential privacy is to make similar pieces of
data appear approximately indistinguishable from one another.
Differential privacy is appealing because its privacy guarantees
are immune to post-processing [18]. For example, private

data can be filtered without threatening its privacy guarantees
[4], [19]. More generally, arbitrary post-hoc computations on
private data do not harm differential privacy. In addition,
after differential privacy is implemented, an adversary with
complete knowledge of the mechanism used to implement
privacy has no advantage over another adversary without
mechanism knowledge [1], [2].

In this paper we use differential privacy to privatize state
trajectories of mobile autonomous agents. We consider vector-
valued trajectories of the form Z = (Z(1), Z(2), ..., Z(k), ...),
where Z(k) ∈ Rd for all k. The `2 norm of Z is defined as
‖Z‖`2 =

(∑∞
k=1 ‖Z(k)‖22

) 1
2 , where ‖ · ‖2 is the ordinary 2-

norm on Rd.
We consider privacy over the set of trajectories

˜̀d
2 = {Z | ‖Z(k)‖2 <∞ for all k}.

This set is similar to the ordinary `2-space, except that the
entire trajectory need not have finite `2-norm. Instead, only
each entry of a trajectory must have finite 2-norm in Rd.
Thus, the set ˜̀d

2 contains trajectories that do not converge,
which admits a wide variety of trajectories seen in control
systems. Consider a network of N agents, where agent i’s
state trajectory is denoted by xi. The kth element of agent i’s
state trajectory is xi(k) ∈ Rd for d ∈ N, and agent i’s state
trajectory belongs to ˜̀d

2.
Differential privacy is defined with respect to an adjacency

relation. We provide privacy to single agents’ state trajectories
(rather than collections of trajectories as in some other works),
which enables agents to privatize all information before it is
ever shared. Thus, our choice of adjacency relation is defined
for single agents.

Definition 3 (Adjacency [5]): Fix an adjacency parameter
bi > 0 for agent i. Adjbi : ˜̀d

2 × ˜̀d
2 −→ {0, 1} is defined as

Adjbi(vi, wi) =

{
1 ‖vi − wi‖`2 ≤ bi
0 otherwise.

4

In words, two state trajectories that agent i could produce
are adjacent if and only if the `2-norm of their difference is
upper bounded by bi. This means that every state trajectory
within distance bi from agent i’s actual state trajectory must
be made approximately indistinguishable from it to enforce
differential privacy.

To calibrate differential privacy’s protections, agent i selects
privacy parameters εi and δi. Typically, εi ∈ [0.1, ln 3] and
δi ≤ 0.01 for all i [5]. The value of δi can be regarded as the
probability that differential privacy fails for agent i, while εi
can be regarded as the information leakage about agent i.

The implementation of differential privacy in this work
provides differential privacy for each agent individually. This
will be accomplished by adding noise to sensitive data di-
rectly, an approach called “input perturbation” privacy in the
literature [20]. Noise is added by a privacy mechanism, which
is a randomized map. We next provide a formal definition of
differential privacy. First, fix a probability space (Ω,F ,P). We
consider outputs in ˜̀d

2 and use a σ-algebra over ˜̀d
2, denoted

Σd2 [21].

3

Definition 4 (Differential Privacy): Let εi > 0 and δi ∈
[0, 1

2) be given. A mechanism M : ˜̀d
2 × Ω −→ ˜̀d

2 is (εi, δi)-
differentially private if, for all adjacent xi, x′i ∈ ˜̀d

2, we have

P[M(xi) ∈ S] ≤ eεiP[M(x′i) ∈ S] + δi for all S ∈ Σd2. 4

The Gaussian mechanism will be used to implement differ-
ential privacy in this work. The Gaussian mechanism adds
zero-mean i.i.d. noise drawn from a Gaussian distribution
pointwise in time. Stating the required distribution uses the
Q-function, defined as Q(y) = 1√

2π

∫∞
y
e−

z2

2 dz.

Lemma 1 (Gaussian Mechanism [4]): Let bi > 0, εi > 0,
and δi ∈ (0, 1

2) be given, fix the adjacency relation Adjbi , and
let xi ∈ ˜̀d

2. The Gaussian mechanism for (εi,δi)-differential
privacy takes the form x̃i(k) = xi(k) + vi(k). Here vi is a
stochastic process with vi(k) ∼ N (0,Σvi), where Σvi = σ2

i Id

with σi ≥ bi
2εi

(Kδi +
√
K2
δi

+ 2εi) and Kδi = Q−1(δi). This
mechanism provides (εi,δi)-differential privacy to xi. �

For convenience, let κ(δi, εi) = 1
2εi

(Kδi +
√
K2
δi

+ 2εi).
We next formally define the problems that are the focus of
the rest of the paper.

III. PROBLEM FORMULATION

In this section we state and analyze the differentially private
formation control problem. We begin with the problem state-
ment itself, then elaborate on the underlying technical details.

A. Problem Statement

Problem 1: Consider a network of N agents with commu-
nication topology modeled by the undirected, simple, con-
nected, and weighted graph G. Let xi(k) ∈ Rd be agent i’s
state at time k, N(i) be agent i’s neighborhood set, γ > 0 be a
stepsize, and wij be a positive weight on the edge (i, j) ∈ E.
We define ∆ij ∈ Rd for all (i, j) ∈ E as the desired relative
distance between agents i and j. Do each of the following:

i. Implement the formation control protocol

xi(k + 1) = xi(k) + γ
∑

j∈N(i)

wij(xj(k)− xi(k)−∆ij),

(1)
in a differentially private, decentralized manner.

ii. Bound the performance of the network in terms of
the privacy parameters of each agent and the algebraic
connectivity of the underlying communication topology;
use those bounds to quantify trade offs between privacy,
connectedness, and network performance.

iii. Analyze how the lack of a central aggregator affects
performance and quantify the cost of the absence of a
central aggregator.

iv. Find a closed form solution for the steady-state error
covariance matrix.

v. Formulate an optimization problem to co-design the com-
munication topology and privacy parameters of the net-
work. 4

Before solving Problem 1, we give the necessary definitions
for formation control. First, we define agent- and network-level

dynamics. Then, we detail how each agent will enforce dif-
ferential privacy. Lastly, we explain how differentially private
communications affect the performance of a formation control
protocol and how to quantify the quality of a formation.

B. Multi-Agent Formation control

The goal of formation control is for agents in a network to
assemble into some geometric shape or set of relative states.
Multi-agent formation control is a well-researched problem
and there are several mathematical formulations one can use to
achieve similar results [13], [22]–[27]. We will define relative
distances between agents that communicate and the control
objective is for all agents to maintain the relative distances to
each of their neighbors. This approach is similar to that of
[24] and the translationally invariant formations in [13].

For the formation to be feasible, we require ∆ij = −∆ji

for all (i, j) ∈ E. The network control objective is driving
limk−→∞(xj(k)− xi(k)) = ∆ij for all (i, j) ∈ E. There is an
infinite set of points that can be in formation; the formation
can be centered around any point in Rd and meet the control
requirement, i.e., we allow formations to be translationally
invariant [13].

Now we define the agents’ update law. Let {p1, ..., pN} be
any collection of points in formation such that pj − pi =
∆ij for all (i, j) ∈ E and let p = (pT1 , . . . , p

T
N)T ∈ RNd

be the network-level formation specification. We consider the
formation control protocol in (1). At the network level, let
x(k) = (x1(k)T , ..., xN (k)T)T ∈ RNd and let x̄(k) = x(k)−
p. Then we analyze

x̄(k + 1) = ((IN − γL(G))⊗ Id) x̄(k). (2)

Letting P = ((IN − γL(G))⊗ Id), we may write x̄(k+ 1) =
Px̄(k).

For analysis, we define the Markov chain1 in dimension d
as Pd = IN − γL(G). Also let x̄i[l] be the l’th scalar element
of x̄i. Then

x̄[l] = [x̄1[l]
, . . . , x̄N[l]

]T (3)

is the vector of each agent’s state in the l’th dimension. With
P = Pd⊗ Id, the protocol x̄(k+ 1) = Px̄(k) is equivalent to
running the protocol

x̄[l](k + 1) = Pdx̄[l](k) (4)

for all l ∈ {1, . . . , d}. In this form, we have the following
convergence result.

Lemma 2 ([27], Theorem 2): If G is connected, Pd is dou-
bly stochastic, and γ ∈ (0, 1

dmax
), then the protocol in (4)

reaches consensus asymptotically and x̄[l](k) −→ 1T 1
N x̄[l](0)1

for all l ∈ {1, . . . , d}. �
Because the protocol in (2) reaches consensus over x̄l for

all l, it solves the translationally invariant formation control
problem in Rd [13].To achieve a formation, each agent must
share its state with its neighborhood at every time step, thus
revealing its state trajectory to other agents, adversaries, and
eavesdroppers. We next describe the means to make this
protocol differentially private.

1With an abuse of terminology, we will sometimes conflate a Markov chain
with its matrix of transition probabilities.

4

C. Private Communications

Agent j starts by selecting privacy parameters εj > 0,
δj ∈ (0, 1

2), and adjacency relation Adjbj with bj > 0.
Agent j then privatizes its state trajectory xj with the Gaussian
mechanism. Let x̃j denote the differentially private version of
xj , where, pointwise in time, x̃j(k) = xj(k) + vj(k), with
vj(k) ∼ N (0,Σvj), where Σvj = σ2

j Id and σj ≥ κ(δj , εj)bj .
Thus agent j keeps the trajectory xj differentially private.
Agent j then shares ˜̄xj(k) = x̃j(k) − pj , which is also
differentially private because subtracting pj is merely post-
processing [18].

D. Private Formation Control

When each agent is sharing differentially private informa-
tion, the node-level formation control protocol becomes

x̄i(k + 1) = x̄i(k) + γ
∑

j∈N(i)

wij(˜̄xj(k)− ˜̄xi(k)), (5)

where agent i uses x̄i outside of the sum rather than ˜̄xi because
it always has access to its own unprivatized state, but uses ˜̄xi in
the sum to ensure there is randomness in its dynamics at every
point in time for privacy. Equation (5) solves Problem 1.i. The
stochastic nature of this protocol implies that agents no longer
exactly reach a formation, and, in particular, their states will
never exactly converge to a steady-state value.

In this work we use the total mean square error of the
network at steady-state, ess, to quantify performance. Since
we are running d identical copies of (4) we can compute
the mean square error in dimension l and then multiply by
d to compute ess. For analysis, let x[l] = [x1[l]

, . . . , xN[l]
]T

and p[l] = [p1[l]
, . . . , pN[l]

]T . Then to analyze performance, let
β[l](k) := 1

N 1T x̄[l](k)1 = 1
N 1Tx[l](k)1 + p[l] − 1

N 1T p[l]1,
which is the state vector the protocol in (4) would converge
to with initial state x[l](k) and without privacy. Also let

e[l](k) = x[l](k)− β[l](k), (6)

which is the distance of the current state to the state the
protocol would converge to without differential privacy. To
quantify the effects of privacy on the network as a whole,
let eagg,l(k) := 1

N ‖E[e2
[l](k)]‖22 be the aggregate error of the

network in dimension l. Then ess is given by

ess := d lim sup
k−→∞

eagg,l(k). (7)

Problem 1.ii requires us to quantify the relationship between
privacy, encoded by (εi, δi); performance, encoded by ess; and
topology, encoded by λ2. These tradeoffs are the subject of
the next section.

IV. PERFORMANCE OF DIFFERENTIALLY PRIVATE
FORMATION CONTROL

In this section we solve Problem 1.ii. First, we show how
the private formation control protocol can be modeled as a
Markov chain with desirable properties. Then, we solve Prob-
lem 1.ii by deriving performance bounds that are functions
of the underlying graph topology and each agent’s privacy
parameters.

A. Formation Control as a Markov Chain

The solution to Problem 1.i, given in (5), takes the form
of a consensus protocol with Gaussian i.i.d. noise perturbing
each agent’s state, which has been previously studied in [22].
Work in [22] uses the fact that a consensus protocol subject to
noise can be modeled as a Markov chain. We first show that
the differentially private formation protocol can be represented
as a Markov chain by expanding ˜̄xj(k) and ˜̄xi(k) in Equation
(5), which yields

x̄i(k+1) = x̄i(k)+γ
∑

j∈N(i)

wij(x̄j(k)+vj(k)−x̄i(k)−vi(k)).

(8)
Let v(k) = [v1(k)T , . . . , vN (k)T]T and let 0d ∈ Rd×d be the
matrix of all zeros. Then v(k) ∼ N (0,Σv), where

Σv =


Σv1 0d . . . 0d
0d Σv2 . . . 0d
...

...
. . .

...
0d 0d . . . ΣvN

 ∈ RNd×Nd.

For the purposes of analysis, we will consider equivalent
network-level dynamics given as follows.

Lemma 3: Let agents use the communication graph G with
weighted Laplacian L(G). Then (8) can be represented at
the network level as x̄(k + 1) = Px̄(k) + z(k), where
P = (IN − γL(G)) ⊗ Id, z(k) ∼ N (0,Σz), and Σz =
γ2(L(G)⊗ Id)Σv(L(G)⊗ Id).

Proof: See Appendix A.
Notice that Σz is not diagonal in general and thus the

elements of z(k) are not independent.
For analysis, we use the network-level update law

x̄(k + 1) = Px̄(k) + z(k), (9)

with P = Pd ⊗ Id. Before stating our main results on
performance, we first define the conditions under which a
network modeled by an undirected, weighted, connected graph
can be modeled as a Markov chain and establish the properties
of this Markov chain.

Lemma 4: For an undirected, weighted, simple, connected
graph G, let γ > 0 be given. If for all i the graph weights are
designed such that γ

∑
j∈N(i) wij < 1, then the matrix Pd =

IN − γL(G) is doubly stochastic, which implies P = Pd⊗ Id
is doubly stochastic.

Proof: See [28, Lemma 4]
Graph Laplacian properties can be used to make stronger

statements. In particular, the Laplacian of an undirected graph
with symmetric weights is always symmetric, and therefore Pd
and P are symmetric. Let the stationary distribution of Pd be
denoted by π, which satisfies πTPd = πT . With the symmetry
of Pd we have the following explicit form for π.

Lemma 5: If Pd is symmetric, then its stationary distribu-
tion is π = 1

N 1.
Proof: See [29, Chapter 4].

Furthermore, we can make a stronger statement about Pd.
Lemma 6: Let γ ∈

(
0, 1

dmax

)
. If G is connected, simple,

and finite, then Pd is irreducible, aperiodic, positive recurrent,
and reversible.

5

Proof: See [28, Lemma 6]
Lemmas 4-6 allow us to develop bounds on the steady state

error in (7) using the following Lemma based on developments
in [22]. That work details several specific cases of consensus
protocols with noise vectors of the form in (9). Those results
are derived in terms of the hitting times of a Markov chain.
Given a Markov chain with transition matrix P, the hitting
time from node i to j, denoted HP (i → j), is the expected
time when the chain reaches node j for the first time when
starting at node i. For this paper we are only interested in the
results when Pd is symmetric, which take the following form.

Lemma 7: If Pd is irreducible, aperiodic, and reversible,
then ess is bounded via

ess ≤ (max
i,j

sij)K(P 2
d)d,

where K(P 2
d) is the Kemeney constant of the Markov chain

with transition matrix P 2
d and sij is the ithjth element of Σz .

Proof: See Appendix B.
Given that Pd = IN − γL(G), we wish to relate K(P 2

d) to
the agents’ graph topology encoded in L(G). We do so with
the following bound.

Lemma 8: Let Pd be the transition matrix of a finite,
irreducible, and reversible Markov chain. Let λ2(Pd) be the
second largest eigenvalue of Pd. Then the Kemeney constant
K(Pd) is bounded via N−1

2 < K(Pd) ≤ N−1
1−λ2(Pd) , and, for

Pd = IN − γL(G),

N − 1

2
< K(P 2

d) ≤ N − 1

1− (1− γλ2(L(G)))2
.

Proof: See [28, Lemma 8]
We are now ready to state our main results. Lemmas 7 and

8 can be used to find a bound on ess in terms of the privacy
parameters εi, δi and the algebraic connectivity of the under-
lying communication topology, which solves Problem 1.ii.

Theorem 1: Consider the d-dimensional network-level pri-
vate formation control protocol x̄(k + 1) = Px̄(k) + z(k).

If γ
∑
j∈N(i) wij < 1, γ ∈

(
0, 1

dmax

)
, G is connected and

undirected with symmetric weights, and σi ≥ κ(δi, εi)bi for
all i, then ess is upper-bounded by

ess ≤
γ(N − 1)2 maxi κ(δi, εi)

2b2i d

λ2(L(G))(2− γλ2(L(G)))
.

Proof: With Lemma 7, ess ≤ (maxi,j sij)K(P 2
d)d. Then

using Lemma 8 to upper bound K(P 2
d) gives

ess ≤
(maxi,j sij) (N − 1)d

γλ2(L(G))(2− γλ2(L(G)))
. (10)

Now consider sij , which is the ithjth entry of Σz =
γ2A(G)ΣvA(G) from Lemma 3. It can be shown that
the diagonal terms of this product are given by sii =
γ2
∑
j∈N(i) w

2
ijσ

2
j , and the off-diagonal terms are given as

sij = γ2
∑
l∈N(i),l 6=j wilwjlσ

2
l . Then, because wij ∈ (0, 1),

max
i,j

sij ≤ γ2 max
i

(
|N(i)| max

j∈N(i)
σ2
j

)
.

For N agents |N(i)| ≤ N − 1, σ2
i ≥ κ(δi, εi)

2b2i , and
maxi[maxj∈N(i) σ

2
j] = maxi σ

2
i , which gives

γ2 max
i

[
|N(i)| max

j∈N(i)
σ2
j

]
≤ γ2(N − 1) max

i
κ(δi, εi)

2b2i .

(11)
Plugging (13) into (12) completes the proof.

We can simplify Theorem 1 when each agent has the same
privacy parameters, i.e., εi = ε, δi = δ, and bi = b for all
i. Consider the case where σ = κ(δ, ε)b so that each agent
adds the minimum amount of noise needed to attain (ε, δ)-
differential privacy. Then we have the following.

Corollary 1 (Homogeneous Privacy Parameters): Let all
conditions of Theorem 1 hold, and let each agent in the
network have privacy parameters ε and δ and the adjacency
parameter b. Then

ess ≤
γκ(δ, ε)2b2(N − 1)2d

λ2(L(G))(2− γλ2(L(G)))
.

�

V. COST OF NO TRUST

The solution to Problem 1.i is decentralized, and, in contrast
to some other works on privacy, it does not require a central
aggregator. The setup in Problem 1.i does not require agents
to trust any external entity with sensitive information, and it
enables them to privatize all information before it is shared.
While the lack of a central aggregator improves privacy in
this way, this absence is also generally understood to provide
diminished performance. In order to establish and quantify
this principle for private formation control, in this section we
analyze the performance of a network with a central aggregator
introduced; comparisons between this performance and that
in Theorem 1 will enable the solution of Problem 1.iv. More
specifically, we formally define a privacy mechanism for when
a central aggregator is present, show that the central aggregator
can improve performance, and find the magnitude of changes
required to make a network without an aggregator achieve
equal or better performance. We refer to this magnitude as the
cost of no trust.

When an aggregator is introduced, agents send their states
to the aggregator, the aggregator then computes qx̄(N(i)) =∑
j∈N(i) wij x̄j(k) for each i, then adds noise to it to im-

plement privacy, and sends the result to the corresponding
agent. This implementation of privacy is referred to as output
perturbation. With this definition of qx̄(N(i)), the formation
control protocol in (1) takes the form

x̄i(k + 1) = x̄i(k) + γ

qx̄(N(i))−
∑

j∈N(i)

wij x̄i(k)

 .

For the aggregator to implement (ε, δ)−differential privacy,
we must first design a privacy mechanism.

A. Privacy Mechanism for Output Perturbation

To formally define an output perturbation differential pri-
vacy mechanism, we formulate an appropriate adjacency re-
lationship, determine the sensitivity of the information shared

6

by the aggregator, and use this information to calibrate the
Gaussian mechanism presented in Lemma 1. We first define
an adjacency relationship over collections of trajectories.

Definition 5 (Output Perturbation Adjacency): Let ξ =
{x1, x2, . . . , xN} and ξ′ = {x′1, x′2, . . . , x′N} be two col-
lections of state trajectories. Then, for a fixed adjacency
parameter b > 0, we define the adjacency relation

Adjb(ξ, ξ
′) =

{
1 ∃i s.t. xj = x′j ∀j 6= i & ‖xi − x′i‖`2 ≤ b
0 otherwise 4

.

In words, two collections of trajectories are adjacent if they
differ in at most one entry, and that difference is bounded in
the `2-norm by b. With this adjacency relation, we define the
output perturbation privacy mechanism.

Theorem 2 (Output Perturbation Mechanism): Fix b > 0
and consider the adjacency relation in Definition 5. The
Gaussian mechanism in Lemma 1 is (ε, δ)-differentially private
with σ ≥ w̄bκ(δ, ε), where w̄ ≥ wij for all (i, j) ∈ E, i.e., w̄
is an upper bound on all weights. Thus, when the aggregator
sends qx̄(N(i)) to agent i, it is (ε, δ)-differentially private.

Proof: See Appendix D.

B. Cost of No Trust

In general, introducing a central aggregator can improve
performance while still ensuring the same level of privacy.
With output perturbation, the agents first share their sensitive
state information with the aggregator, then the aggregator
sends noisy functions of those states to the agents. Of course,
the agents or network designer must trust that the central ag-
gregator does not have ill intent and will faithfully implement
differential privacy.

When using input perturbation, each of the x̄j(k) terms is
privatized individually by each agent and their sum in the
formation control protocol in (5) contains several noisy terms.
In output perturbation, the sum is computed and noise is added
to it once. This difference in the addition of noise results in
the difference in performance.

We now analyze the cost of no trust by comparing a
network using input perturbation and a network using output
perturbation. Consider two graphs, GIP and GOP , where
agents in GIP use input perturbation privacy and agents
in GOP use output perturbation and a central aggregator.
Both networks use identical, homegenous privacy parameters
ε, δ, and adjacency parameter b. The two networks have
identical vertex sets but can have different edge sets and thus
different algebraic connectivities. Let λ2(L(GIP)) = λIP and
λ2(L(GOP)) = λOP . Let eIP be the steady-state error of the
input perturbation network and eOP be the steady-state error
of the output perturbation network. With Corollary 1, these
satisfy

eIP ≤
γκ(δ, ε)2b2(N − 1)2d

λIP (2− γλIP)
,

and

eOP ≤
γκ(δ, ε)2b2(N − 1)2w̄2d

λOP (2− γλOP)
,

respectively.

If the two networks were to have identical communication
topologies, i.e., where λOP = λIP . In this case eOP < eIP
because the steady-state errors only vary by a factor of w̄2 and
w̄ ∈ (0, 1). Thus, with fixed privacy parameters, the only way
that input perturbation will outperform output perturbation is if
the input perturbation network is sufficiently connected. Thus,
we quantify the “cost of no trust” as how much larger λIP
must be than λOP to provide the same (or better) performance.
The following theorem quantifies the cost of no trust in this
sense.

Theorem 3: With GIP and GOP defined as above, let λIP =
λOP + θ for some θ ≥ 0 Then eIP ≤ eOP if θ satisfies

max

{
0,
ρ1 −

√
ρ2

2γ

}
≤ θ ≤ min

{
N − λOP ,

ρ1 +
√
ρ2

2γ

}
,

where ρ1 = 2− 2γλOP and

ρ2 = (2γλOP − 2)2 +
4γλOP (γλOP − 2)

w̄2
.

Proof: First, consider ρ1−
√
ρ2

2γ ≤ θ ≤ ρ1+
√
ρ2

2γ . Note that
ρ1−
√
ρ2

2γ and ρ1+
√
ρ2

2γ are the roots of a quadratic equation, after
plugging in ρ1 and ρ2 and simplifying, this quadratic equation
is given by

Υ(θ) = γθ2 + (2γλOP − 2)θ − (w̄2 − 1)(λOP (2− γλOP))

w̄2
.

The condition ρ1−
√
ρ2

2γ ≤ θ ≤ ρ1+
√
ρ2

2γ and γ > 0 imply that
Υ(θ) ≤ 0. Simplifying this inequality gives

1

(λOP + θ)(2− γ(λOP + θ))
≤ w̄2

λOP (2− γλOP)
,

then multiplying both sides by γκ(δ, ε)2b2(N − 1)2d gives

γκ(δ, ε)2b2(N − 1)2d

(λOP + x)(2− γ(λOP + θ))
≤ γκ(δ, ε)2b2(N − 1)2w̄2d

λOP (2− γλOP)
,

which is precisely eIP ≤ eOP . With λIP = λOP + θ, we
require θ ≥ 0 since we are only interested in λIP ≥ λOP and
θ ≤ N −λOP to ensure that λIP ≤ N which must be true for
graphs on N nodes. Thus projecting ρ1−

√
ρ2

2γ ≤ θ ≤ ρ1+
√
ρ2

2γ

to the interval [0, N − λOP] gives max{0, ρ1−
√
ρ2

2γ } ≤ θ ≤
min{N − λOP ,

ρ1+
√
ρ2

2γ }.

VI. CLOSED-FORM FOR STEADY-STATE ERROR
COVARIANCE

In this section we find a closed form solution for the
steady-state error covariance matrix of the differentially private
formation protocol. The steady-state error covariance matrix,
which we denote Σss = limk→∞E[e(k)e(k)T], is useful as it
enables a finer-grained analysis of system performance when
compared to the scalar ess, specifically it reveals how the
error of each agent is coupled with the rest of the network.
Obtaining Σss is also useful as it enables the computation of
the scalar steady-state error we have been using to quantify
performance via ess = 1

N Tr(Σss).
In [22], results of this kind are derived in terms of the hitting

times of the underlying Markov chain. In this section, we pro-
vide an alternate solution using the Lyapunov equation whose

7

coefficients are taken directly from the transition matrix Pd
and L(G), thus precluding the need to compute hitting times.
In general, Lyapunov equations are easily solved numerically,
though we provide an analytical solution. Before presenting
this result, we first give a preliminary result from [22].

Similar to the previous sections, we opt to analyze the
protocol that is being run in each dimension of Rd and then
make conclusions about the steady-state error covariance for
the protocol in Rd. Recall that to implement (9), each agent
runs the protocol

x̄[l](k + 1) = Pdx̄[l](k) + z[l](k),

for l ∈ {1, . . . , d}, with Pd = IN−γL(G), x̄[l] defined by (3),
Σz[l] = γ2L(G)Σv[l]L(G) from Lemma 3, and error in the lth

dimension, e[l](k), defined by (6). Since e[l](k) is a zero mean
random variable, the error covariance matrix in the lth dimen-
sion at time k is defined by Σe[l](k) = E[e[l](k)e[l](k)T]. Let
J = 1

N 11T . Then we have the following.
Lemma 9 (Error Dynamics [22]): The matrix Pd − J has

eigenvalues strictly less than 1. Moreover, e[l](k) evolves via

e[l](k + 1) = (Pd − J)e[l](k) + (IN − J)z[l](k),

Σe[l](k) evolves according to

Σe[l](k+1) = (Pd−J)Σe[l](k)(Pd−J)+(IN−J)Σz(IN−J),

and Σe[l](k) can be determined recursively by

Σe[l](k) =

k−1∑
i=0

(Pd − J)i(IN − J)Σz(IN − J)(Pd − J)i. �

We now show that the steady-state error covariance ma-
trix is a solution to a discrete-time Lypaunov equation. Let
Σss[l] = limk→∞ Σe[l](k) be the steady-state error covariance
matrix in dimension l. An analytical solution to the Lyapunov
equation can be found using the vectorization operator defined
by vec(B) = [b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn]T

where B ∈ Rm×n and the ith jth entry is bij [30].
Theorem 4 (Solving for Σss[l]): Let

Q[l] = γ2(IN − J)L(G)Σv[l]L(G)(IN − J),

with Σv[l] = diag(σ2
1 , . . . , σ

2
n) and σj ≥ κ(δj , εj)bj . Then,

Σss[l] is a solution to the discrete time Lyapunov equation.

Σss[l] = Q[l] + (Pd − J)Σss[l](Pd − J).

Solving using the vectorization operator gives

vec(Σss[l]) = γ2R−1Mvec
(
Σv[l]

)
,

where R = IN2 − (Pd − J) ⊗ (Pd − J), and M =
((IN − J)⊗ (IN − J)) (L(G)⊗ L(G)) .

Proof: See Appendix E.
Since agents run an identical copy of the same controller

in each dimension, we have Σss = Σess[l] ⊗ Id. In the
previous sections we have been using the scalar ess to quantify
performance, and here we note that ess = 1

N Tr(Σess[l])d.
This equality means that we have found a series of matrix
operations that can be used to compute the steady-state error
covariance matrix of a network executing differentially private

formation control. Theorem 4 explicitly shows that the error
in the network depends on the underlying communication
topology through L(G). This implies that one can exploit this
dependence to design a topology that promotes lower error,
and we explore this in the next section.

VII. PRIVACY AND NETWORK CO-DESIGN

Given the aforementioned bounds on formation error, we
now focus on designing networks for performing private
formation control. Our goal is to design a network and
privacy scheme that meet global and network-level perfor-
mance requirements, agent-level privacy requirements, and
other constraints. The key tradeoff is balancing the agent-level
privacy requirements with global performance. For example, if
some agents use very strong privacy, global performance will
be poor, even if many other agents have only weak privacy
requirements. Network design thus requires balancing these
tradeoffs while designing a weighted, undirected graph.

In this section, we formulate an optimization problem that
takes an undirected, unweighted graph topology and several
constraints as inputs and outputs the privacy parameters and
edge weights that minimize formation control error. In partic-
ular, agents’ privacy parameters and their graph Laplacian are
the decision variables over which we optimize. Using opti-
mization to design a network has appeared in several different
contexts. In [31], the authors formulate the optimal allocation
of edge weights in a network to minimize effective resistance
for a given input network. In [32], an initial topology is
given and an optimization problem is formulated to determine
what edges should be added to optimize network coherence.
There are many ways to formulate an optimal network design
problem and in this work we use an approach similar to
[31]: we fix an unweighted input topology and determine the
allocation of weights to optimize network-level criteria while
satisfying constraints.

Other works, such as [33], explore using graph Laplacian
eigenvalue constraints to ensure a minimal level of connectiv-
ity in the designed graph and show that these constraints are
typically convex and, we use similar methods here. Overall,
this privacy and network co-design problem is formulated to
incorporate constraints on privacy and performance, and we
show that this leads to problems that are convex in the graph
Laplacian and privacy parameters, enabling them to be solved
with conventional computational tools.

Throughout this section we assume an input undirected,
unweighted, simple graph Laplacian L0 is given and we are
left with choosing the edge weights and privacy parameters to
minimize an objective subject to constraints. We define L(L0)
as the space of all weighted graph Laplacians where there is
no edge between between agents i and j if there is no edge
between agents i and j in L0, and we optimize over the set
L(L0).

The three following subsections discuss (i) network-level
design goals, which give the objective function and some con-
straints, (ii) agent-level requirements, which add constraints,
and (iii) the convexity of the overall problem that results.

8

A. Network-Level Considerations

The first network-level constraint we consider is perfor-
mance, measured by the steady-state formation error of the
network. Mathematically, the steady-state error of the network
must not exceed some specified level of steady state error eR,
i.e., we require ess ≤ eR. We use the upper bound on ess from
Theorem 1 to provide a sufficient condition for this constraint.
Applying Theorem 1, we see that

γ(N − 1)2 maxi κ(δi, εi)
2b2i d

λ2(L(G))(2− γλ2(L(G)))
≤ eR

ensures that ess ≤ eR. This further incorporates each agent’s
privacy parameters and the underlying topology, which one
expects to impact performance.

Next, we must ensure that the network’s communication
topology is sufficiently connected. Simply providing con-
nectivity can be achieved by requiring that the algebraic
connectivity of the graph be positive. However, one can
require a greater degree of connectedness by requiring that
the algebraic connectivity be larger. While connected weighted
graphs can have values of algebraic connectivity that are
arbitrarily small, we require a graph’s algebraic connectivity
to be bounded below by λ2L

. One example would be to
let λ2L

be the alegraic connecitivity of the unweighted line
graph on N nodes,the line graph is the least connected graph
among connected graphs [17], and thus this constraint ensures
that the performance of the weighted graphs we design is
no worse than the worst-performing unweighted graph. The
connectivity constraint thus takes the form λ2(L(G)) ≥ λ2L

,
or −λ2(L(G)) ≤ −λ2L

.
With network-level constraints defined, we now define

a network-level objective function. This objective function
should encode the fact that a dense graph costs more. This
cost may be monetary, e.g., when building a network, or it
may simply encode the desire to reduce communications, e.g.,
when bandwidth is limited. To encode this, the cost should be
small when the degree of each agent is small and large when
the degrees are large. We therefore choose the cost ϑTr(L(G)),
where ϑ ∈ R is a weighting factor that can be tuned.

The objective function should also depend on the privacy
parameters. As the strength of privacy in the network de-
creases, performance increases, and this weaker privacy should
result in a lower cost (constraints on privacy are addressed in
the next sub-section). Weaker privacy protections come from
increasing εi for all i and thus the objective function should
be decreasing in εi. Therefore, we can achieve our goals of
minimizing the cost of the communication and maximizing
performance by minimizing the objective function

Γ({εi}i∈[N], L(G)) = ϑTr(L(G)) +
∑
i∈[N]

1

ε2i

over L(G) ∈ L(L0) and εi for all i.
If we were to minimize Γ({εi}i∈[N], L(G)) with the current

constraints, the optimal solution will have large εi for all i.
This results in weak privacy, and implies that the network
designer is forcing each agent to share their sensitive informa-
tion with minimal protections. However, individual agents may

have their own privacy requirements, which we incorporate in
the next section.

B. Agent-Level Constraints
We let each agent specify a maximum leakage of private

information that it will tolerate, which is formalized as a maxi-
mum value of the privacy parameter εi. Thus, agent i specifies
some εmaxi , and we incorporate the constraint εi ≤ εmaxi for
all i.

We also wish to allow agents that have larger degrees to
be able to use stronger privacy. To interpret this, if an agent
improves the connectivity of the network by having more
edges, then that agent is contributing to making the graph
more connected, which increases λ2 and decreases steady-
state error. In exchange for doing so, they can be provided
with the flexibility to make their information more private.
To formalize this, let qid : R → R be an increasing, convex
function of agent i’s degree di, and let qiε : R → R be an
increasing, convex function of agent i’s privacy parameter εi;
because smaller εi implies stronger privacy, the function qiε
is decreasing in the strength of agent i’s privacy. Then, we
implement the constraint qid(di) + qiε(εi) ≤ ρi, where ρi is a
tunable parameter.

C. Co-Design Problem and Convexity
Assembling the aforementioned objective and constraints

gives the following problem.
Problem 2 (Privacy and Network Co-Design): Given an

input undirected, unweighted, simple graph L0, to co-design
privacy and agents’ communication topology, solve:

min
L(G)∈L(L0),{εi}i∈[N]

ϑTr(L(G)) +
∑
i∈[N]

1

ε2i

subject to
γ(N − 1)2 maxi κ(δi, εi)

2b2i d

λ2(L(G))(2− γλ2(L(G)))
≤ eR

qid(di) + qiε(εi) ≤ ρi for all i
εi ≤ εmaxi for all i
− λ2(L(G)) ≤ −λ2L

.

Now we state our main results on the convexity of Prob-
lem 2.

Theorem 5: Fix λ2L
and δi, bi, εmaxi , and ρi for all i. Then

Problem 2 is a convex optimization problem.
Proof: See Appendix F.

D. Numerically Solving Problem 2
We have shown that Problem 2 is convex. This implies

that common off-the-shelf optimization algorithms can solve
it efficiently.

We have built a MATLAB program to solve Problem 2,
which is available on GitHub [34]. Due to the non-linearities
in the problem, i.e., some of our constraints are in terms of the
second largest eigenvalue of one of our decision variables, we
found MATLAB and fmincon to perform well for problems
of this kind. When optimizing over L(G) ∈ L(L0), since we
only consider undirected, symmetrically weighted graphs, we
need only find the upper triangular elements of L(G), which
helps reduce computation time.

9

1

2

3

4

5 6

7

8

9

10

Fig. 1: The fixed input topology used for the simulation results
presented in Section VIII. This topology contains 10 nodes
and specifies the edges that must be present, though the edge
weights are not specified and will be optimized over.

Agent
Parameter

ηi τi ρi εmax
i

1 0.062 0.041 14.79 0.681
2 0.148 0.008 15.27 0.862
3 0.157 0.345 15.09 0.782
4 0.735 0.176 15.16 0.516
5 0.323 0.022 14.84 0.713
6 0.452 0.174 14.75 0.387
7 0.403 0.287 14.84 0.637
8 0.066 0.272 14.95 0.472
9 0.333 0.213 14.78 0.725

10 0.129 0.195 15.23 0.513

TABLE I: The agent-level parameters used in the privacy and
network co-design simulation results presented in Section VIII.
The parameters ηi, τi, ρi are used to define the constraint
τiεi+ηidi ≤ ρi for all i, and εmaxi defines the minimum level
of privacy for each agent. The values εmaxi ∈ [0.387, 0.862]
correspond to each agent requiring relatively strong privacy.
Agent 6 requires the highest level of privacy and agent 2
requires the weakest privacy among the agents in the network.

VIII. SIMULATION RESULTS

Here we provide simulation results for optimal privacy and
network co-design. We define an input topology and then fix
all of the constraint parameters other than the steady state error
requirement, and we vary the maximum permissible steady
state error to illustrate how the output of the problem changes.

Consider a network of N = 10 agents. First, we fix the
input topology to be the graph shown in Figure 1, which is
an undirected, unweighted graph with 10 nodes. Then, we let
qiε = τiεi and qid = ηidi for all i, where ηi, ρi ∈ R are
weighting factors. The constraint qid(di) + qiε(εi) ≤ ρi takes
the form τiεi + ηidi ≤ ρi. Fix λ2L

= 0.3, γ = 1
20 , bi = 1 for

all i, and δi = 0.05 for all i. The values of ηi, τi, ρi, and
εmaxi are specified in Table I.

Figure 2 shows the output topologies for eR ∈
{50, 100, 150}. In the figure it can be seen that as eR
increases, the weights in the network become smaller, depicted
in the figure by the labeled weights and the decreased thickness
of the edges. This shows that as the performance requirement
is relaxed, the resulting optimal network is less connected.

As the edge weights change with varying eR, we can see
that the optimization problem is changing some weights more
than others, which is primarily controlled by the constraint
qid(di) + qiε(εi) ≤ ρi. For example, in Figure 2 the weight
of the edge connecting agents 5 and 8 does not change much
with eR much, but the other edge weights have larger variation
with eR. Figures 1 & 2 were generated using [35].

IX. CONCLUSIONS

In this paper we have studied the problem of differentially
private formation control. This work enables agents to col-
laboratively assemble into formations with bounded steady
state error and provides methods for solving for the error
covariance matrix at steady-state. This work also develops
and solves an optimization problem to design the optimal
network and privacy parameters for differentially private for-
mation control. Future work includes generalizing to other
privacy/performance co-design problems and implementation
on mobile robots.

REFERENCES

[1] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[3] S. P. Kasiviswanathan and A. Smith, “On the’semantics’ of differential
privacy: A bayesian formulation,” Journal of Privacy and Confidential-
ity, vol. 6, no. 1, 2014.

[4] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.

[5] K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private lq
control,” arXiv preprint arXiv:1807.05082, 2018.

[6] M. T. Hale and M. Egerstedt, “Cloud-enabled differentially private
multiagent optimization with constraints,” IEEE Transactions on Control
of Network Systems, vol. 5, no. 4, pp. 1693–1706, 2017.

[7] J. Le Ny and M. Mohammady, “Differentially private mimo filtering for
event streams,” IEEE Transactions on Automatic Control, vol. 63, no. 1,
pp. 145–157, 2017.

[8] A. Jones, K. Leahy, and M. Hale, “Towards differential privacy for sym-
bolic systems,” in 2019 American Control Conference (ACC). IEEE,
2019, pp. 372–377.

[9] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in Proceedings of the 2012 ACM Workshop
on Privacy in the Electronic Society, ser. WPES ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 81–90. [Online].
Available: https://doi.org/10.1145/2381966.2381978

[10] Y. Wang, Z. Huang, S. Mitra, and G. E. Dullerud, “Differential privacy
in linear distributed control systems: Entropy minimizing mechanisms
and performance tradeoffs,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 1, pp. 118–130, 2017.

[11] Z. Xu, K. Yazdani, M. T. Hale, and U. Topcu, “Differentially private
controller synthesis with metric temporal logic specifications,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 4745–4750.

[12] Y. Wang, M. Hale, M. Egerstedt, and G. E. Dullerud, “Differentially
private objective functions in distributed cloud-based optimization,” in
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 3688–3694.

[13] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[14] A. Nedić, A. Olshevsky, and W. Shi, Decentralized Consensus Opti-
mization and Resource Allocation, 2018, pp. 247–287.

[15] N. Hashemi and J. Ruths, “Co-design for security and performance:
Geometric tools,” arXiv e-prints, pp. arXiv–2006, 2020.

[16] C. Hawkins and M. Hale, “Differentially private formation control,” in
2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp.
6260–6265.

10

0.674
0.901

1.218

1.215

0.925

0.161

0.
12
5

1.373

1.368

0.
81
3

1.672

0.002

0.201

1.6
70

1

2

3

4

5 6

7

8

9

10

(a) ess ≤ 50

0.345
0.446

0.602

0.602

0.451

0.082

0.
05
4

0.675

0.676

0.
40
1

0.829

0.003

0.100

0.8
29

1

2

3

4

5 6

7

8

9

10

(b) ess ≤ 100

0.240
0.321

0.424

0.425

0.323

0.057

0.
04
4

0.486

0.486

0.
28
4

0.590

0.002

0.071

0.5
90

1

2

3

4

5 6

7

8

9

10

(c) ess ≤ 150

Fig. 2: The output of the optimal privacy and network co-design solver with a fixed input topology defined in Figure 1, agent
level parameters defined by Table I, and with the remaining parameters defined in Section VIII. For these results, we hold
everything but the ess constraint fixed and then run the solver for eR ∈ {50, 100, 150}. In the graphs above, the edges are
drawn with thickness proportional to their weight, the edges are labeled with their weight, and the smaller a node is drawn, the
more private it is; that is a smaller node corresponds to a smaller εi. As we increase eR, we are allowing weaker performance
for the resulting network. The sample outputs here illustrate that as we loosen the network level performance constraint, much
less edge weight is used throughout the network and thus the network becomes less connected. This shows that the privacy and
network co-design problem successfully encodes the trade-offs between privacy, performance, and communication topology
given design requirements.

[17] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathemat-
ical journal, vol. 23, no. 2, pp. 298–305, 1973.

[18] C. Dwork, “Differential privacy,” Automata, languages and program-
ming, pp. 1–12, 2006.

[19] K. Yazdani and M. Hale, “Error bounds and guidelines for privacy
calibration in differentially private kalman filtering,” in 2020 American
Control Conference (ACC), 2020, pp. 4423–4428.

[20] J. Le Ny, Differential Privacy for Dynamic Data. Springer, 2020.
[21] B. Hajek, Random processes for engineers. Cambridge university press,

2015.
[22] A. Jadbabaie and A. Olshevsky, “Scaling laws for consensus protocols

subject to noise,” 2015.
[23] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinites-

imally rigid formations of multi-robot networks,” International Journal
of control, vol. 82, no. 3, pp. 423–439, 2009.

[24] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus
in multivehicle cooperative control,” IEEE Control systems magazine,
vol. 27, no. 2, pp. 71–82, 2007.

[25] W. Ren, “Consensus strategies for cooperative control of vehicle forma-
tions,” IET Control Theory & Applications, vol. 1, no. 2, pp. 505–512,
2007.

[26] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE transactions on automatic control, vol. 49,
no. 9, pp. 1465–1476, 2004.

[27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[28] C. Hawkins and M. Hale, “Differentially private formation control,”
arXiv preprint arXiv:2004.02744, 2020.

[29] M. Pinsky and S. Karlin, An introduction to stochastic modeling.
Academic press, 2010.

[30] K. Schacke, “On the kronecker product,” Master’s thesis, University of
Waterloo, 2004.

[31] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of
a graph,” SIAM review, vol. 50, no. 1, pp. 37–66, 2008.

[32] T. Summers, I. Shames, J. Lygeros, and F. Dörfler, “Topology design
for optimal network coherence,” in 2015 European Control Conference
(ECC). IEEE, 2015, pp. 575–580.

[33] S. Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge
weights of a graph to meet laplacian eigenvalue constraints,” in 2010
48th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2010, pp. 1016–1023.

[34] C. Hawkins, “Differentially-private-formation-control-privacy-network-
co-design,” https://github.com/fx0641/Differentially-Private-Formation-
Control-Privacy-Network-Co-Design, 2021.

[35] T. P. Peixoto, “The graph-tool python library,” 2014.
[36] A. Ghosh and S. Boyd, “Upper bounds on algebraic connectivity via

convex optimization,” Linear algebra and its applications, vol. 418, no.
2-3, pp. 693–707, 2006.

[37] A. Agrawal and S. Boyd, “Disciplined quasiconvex programming,”
Optimization Letters, vol. 14, no. 7, pp. 1643–1657, 2020.

Calvin Hawkins is a PhD student at the University
of Florida and is a recipient of the Graduate School
Preeminence Award. He received his Bachelor’s de-
gree in Mechanical Engineering summa cum laude
from Wayne State University in May, 2019. His
current research interests are broadly in the area of
privacy in control, with an emphasis on bringing
differential privacy to new classes of data typically
used by control systems and quantifying the effects
of privacy upon feedback.

Matthew Hale is an Assistant Professor of Me-
chanical and Aerospace Engineering at the Univer-
sity of Florida. He received his BSE in Electrical
Engineering summa cum laude from the University
of Pennsylvania in 2012, and his MS and PhD
in Electrical and Computer Engineering from the
Georgia Institute of Technology in 2015 and 2017,
respectively. His research interests include multi-
agent systems, mobile robotics, privacy in control,
and distributed optimization. He was the Teacher of
the Year in the UF Department of Mechanical and

Aerospace Engineering for the 2018-2019 school year, and he received an
NSF CAREER Award in 2020 for his work on privacy in control systems.

11

APPENDIX

A. Proof of Lemma 3
We have the node level protocol

x̄i(k+1) = x̄i(k)+γ
∑

j∈N(i)

wij(x̄j(k)+vj(k)−x̄i(k)−vi(k)),

which we factor as

x̄i(k + 1) = x̄i(k) + γ
∑

j∈N(i)

wij(x̄j(k)− x̄i(k))

+γ
∑

j∈N(i)

wij(vj(k)− vi(k)).

Let zi(k) = γ
∑
j∈N(i) wij(vj(k)− vi(k)), and note that

zi(k) = γ[A(G)⊗ Id]row iv(k)− γ[D(G)⊗ Id]row iv(k).

Hence if we let z(k) = [z1(k)T , . . . , zN (k)T]T we have
z(k) = −γ(L(G) ⊗ Id)v(k), since L(G) = D(G) − A(G).
Since v(k) and z(k) are zero mean, by definition Σv =
E[v(k)v(k)T], and we have

Σz =E[z(k)z(k)T]

=E[γ(L(G)⊗ Id)v(k)(γ(L(G)⊗ Id)v(k))T],

then since L(G) is symmetric, the linearity of expectation gives

Σz = γ2(L(G)⊗ Id)E[v(k)v(k)T](L(G)⊗ Id)
= γ2(L(G)⊗ Id)Σv(L(G)⊗ Id).

Overall, this gives z(k) ∼ N (0, γ2(L(G)⊗Id)Σv(L(G)⊗Id)).

B. Proof of Lemma 7
First, recall our definition of network level steady-state error

in (7): we let ed = lim supk−→∞ eagg(k) and then set ess =
edd. From [22], (17) states that

ed =
1

N3

N∑
i=1

N∑
k=1

N∑
l=1

HP 2
d
(k → l)sli

− 1

N2

∑
i<j

sij

(
HP 2

d
(i→ j) +HP 2

d
(j → i)

)
.

By dropping the negative term and taking the max over sli, it
follows that

ed ≤
1

N3

N∑
i=1

N∑
k=1

N∑
l=1

HP 2
d
(k → l)sli

≤ maxi,j sij
N3

N∑
i=1

N∑
k=1

N∑
l=1

HP 2
d
(k → l).

The Markov chain evolving according to Pd has stationary
distribution π = 1

N 1, and thus

maxi,j sij
N3

N∑
i=1

N∑
k=1

N∑
l=1

HP 2
d
(k → l)

=
(maxi,j sij)

N

N∑
i=1

N∑
k=1

N∑
l=1

1

N2
HP 2

d
(k → l)

=
(maxi,j sij)

N

N∑
i=1

N∑
k=1

N∑
l=1

πkπlHP 2
d
(k → l).

By definition, K(P 2
d) =

∑N
k=1

∑N
l=1 πkπlHP 2

d
(k → l), thus

maxi,j sij
N3

N∑
i=1

N∑
k=1

N∑
l=1

HP 2
d
(k → l)

=
(maxi,j sij)

N

N∑
i=1

K(P 2
d) = (max

i,j
sij)K(P 2

d)

giving ed ≤ (maxi,j sij)K(P 2
d), and finally

ess ≤ (max
i,j

sij)K(P 2
d)d.

C. Proof of Theorem 1

With Lemma 7, ess ≤ (maxi,j sij)K(P 2
d)d. Then using

Lemma 8 to upper bound K(P 2
d) gives

ess ≤
(maxi,j sij) (N − 1)d

γλ2(L(G))(2− γλ2(L(G)))
. (12)

Now consider sij , which is the ithjth entry of Σz =
γ2A(G)ΣvA(G) from Lemma 3. It can be shown that
the diagonal terms of this product are given by sii =
γ2
∑
j∈N(i) w

2
ijσ

2
j , and the off-diagonal terms are given as

sij = γ2
∑
l∈N(i),l 6=j wilwjlσ

2
l . Then, because wij ∈ (0, 1),

max
i,j

sij ≤ γ2 max
i

(
|N(i)| max

j∈N(i)
σ2
j

)
.

For N agents |N(i)| ≤ N − 1, σ2
i ≥ κ(δi, εi)

2b2i , and
maxi[maxj∈N(i) σ

2
j] = maxi σ

2
i , which gives

γ2 max
i

[
|N(i)| max

j∈N(i)
σ2
j

]
≤ γ2(N − 1) max

i
κ(δi, εi)

2b2i .

(13)
Plugging (13) into (12) completes the proof.

D. Proof of Theorem 2

First we establish a sensitvity bound for two adjacent
collections of trajectories, ξ and ξ′. We consider

‖qξ(N(i))− qξ′(N(i))‖`2

=

 ∞∑
k=1

 ∑
j∈N(i)

wij
(
ξj(k)− ξ′j(k)

)2


1
2

.

Using the adjacency relationship, suppose that ξ and ξ′ differ
in entry l. Then

‖qξ(N(i))− qξ′(N(i))‖`2 =

(∞∑
k=1

[
wil
(
ξl(k)− ξ′l(k)

)]2) 1
2

.

By factoring out wij and then using wij ≤ w̄ and
upper bounding the remaining terms in the sum with
the adjacency relationship, we arrive at the sensitivity
bound ‖qξ(N(i)− qξ′(N(i))‖`2 ≤ w̄b. Then using Lemma 1,
the Gaussian mechanism is differentially private for σ ≥
w̄bκ(δ, ε).

12

E. Proof of Theorem 4

From Lemma 9, and with Q[l] defined above, we have

Σss[l] =

∞∑
i=0

(Pd − J)iQ[l](Pd − J)i,

and taking the first term out of the sum gives

Σss[l] = Q[l] +

∞∑
i=1

(Pd − J)iQ[l](Pd − J)i.

Factoring out (Pd − J) on both sides of the sum gives

Σss[l]= Q[l]+(Pd−J)

(∞∑
i=1

(Pd −J)i−1Q[l](Pd−J)i−1

)
(Pd−J).

The remaining infinite sum is precisely Σss[l] . Thus, we arrive
at the equation Σss[l] = Q[l]+(Pd−J)Σss[l](Pd−J), which is
the discrete-time Lyapunov equation. One analytical solution
to it can be found using the vectorization operator [30], and
it takes the form

vec(Σss[l]) = (IN2 − (Pd − J)⊗ (Pd − J))−1vec(Q[l]).

For convenience let R = IN2 − (Pd − J) ⊗ (Pd − J). R is
invertible because (Pd−J) has eigenvalues strictly less than 1
from Lemma 9. Then simplifying further by plugging in Q[l] =
(I−J)Σz[l](I−J) and using vec(ABC) = (CT ⊗A)vec(B),
we have

vec(Σss[l]) = R−1 ((IN − J)⊗ (IN − J)) vec (Σzl) .

Then, plugging in Σz[l] = γ2L(G)Σv[l]L(G)T gives us

vec(Σss[l]) = γ2R−1Mvec
(
Σv[l]

)
.

F. Proof of Theorem 5

We begin by analyzing the objective function ϑTr(L(G)) +∑
i∈[N]

1
ε2i

. The trace is a linear operator over the set of N×N
matrices and hence convex, and the function 1

ε2i
is easily shown

to be convex for all i. The objective function is thus convex
by virtue of being a sum of convex functions.

The constraint qd(di) + qε(εi) ≤ ρi is convex since
qid and qiε are convex for all i. The constraint εi ≤
εmaxi is also trivially convex. Lastly, we consider the
constraint on λ2. We note that, for a graph Lapla-
cian L, λ2(L) = inf{xTLx : ‖x‖2 = 1, 1Tx = 0} [36], which
is a concave function because it is the infimum over a set of
linear maps. The constraint above contains −λ2(L(G)), which
is a convex function, upper bounded by a constant, which gives
a convex constraint.

To analyze the constraint ess ≤ eR, we use the following
Lemma.

Lemma 10 ([37]): Suppose h is a quasiconvex mapping of
a subset C of Rk into R ∪ ∞, and {I1, I2, I3} is a partition
of {1, 2, . . . , k} such that h is nondecreasing in the arguments
indexed by I1 and nonincreasing in the arguments indexed by
I2, and g maps a subset of Rn into Rk in such a way that its
components gi are convex for i ∈ I1, concave for i ∈ I2, and
affine for i ∈ I3. Then the composition

f = h ◦ g

is quasiconvex. If additionally h is convex, then f is convex
as well. �
We will now show that ess ≤ eR is a convex constraint. As
written, ess is a mapping from L ∈ L(L0) and {εi}i∈[N] ∈ RN+
to R+. However, for the purpose of analysis, we will consider
ess as a function of λ2(L) ∈ [0, N] and {εi}i∈[N] ∈ RN+ ,
where λ2 is a function of L. Then, use the composition of
ess and λ2(L) to analyze ess as a function of L ∈ L and
{εi}i∈[N] ∈ RN+ .

First we rewrite the constraint ess ≤ eR as

γNd(N − 1)2

eR
max
i
κ(δi, εi)

2b2i ≤ Nλ2(L(G))(2−γλ2(L(G))).

To simplify the left hand side, group the constants as c =
γNd(N−1)2

eR
which is independent of the topology and privacy,

and let g1i
(εi) = κ(δ, εi)

2b2i . Then for the right hand side we
treat z = λ2(L(G)) as a scalar giving g2(z) = Nz(2 − γz),
and h(L) = λ2(L) is the mapping from L to λ2(L) Then the
constraint can be reduced to cmaxi g1i ≤ g2 ◦ h

Now we analyze the convexity of g1i . It is only a function
of εi, and we only need to consider the convexity over the
space of privacy parameters εi > 0. Differentiating g1i

with
respect to εi twice gives

∂2g1i

∂ε2i
=

1

2ε2(2ε+K2
δ)
−
Kδ +

√
2ε+K2

δ

2ε2(2ε+ +K2
δ)

3
2

−
2(Kδ +

√
2ε+K2

δ)

ε3
√

2ε+ +K2
δ

+
3(Kδ +

√
2ε+K2

δ)2

2ε4
.

This expression is greater than or equal to 0 if Kδ ≥ 0 and
εi > 0. Since we only consider εi > 0 and Kδ > 0 because
δ ∈ (0, 1

2), the second derivative is always greater than 0 and
thus g1i

is a convex function. In the constraint, we are taking
the the maximum of g1i over i, which is the maximum over
a collection of convex functions, which is also convex. Thus,
g1 = maxi g1i

is convex.
Now we shift our attention to g2. We have ∂2g2

∂z2 = −2Nγ,
and since γ > 0, we have ∂2g2

∂z2 < 0 and thus g2 is concave in
λ2. Taking the first derivative with respect to z gives, ∂g2

∂z =

2N − 2γz, simplifying ∂g2
∂z ≥ 0 gives γz ≤ N , where this

inequality always holds because we only consider connected
graphs, such that z ∈ [0, N], and we require that γ ≤ 1

N .
Thus, g2 is non-decreasing

Now we apply Lemma 10 to g2 ◦ h. We consider h(L) =
λ2(L) = inf{xTLx : ‖x‖2 = 1, 1Tx = 0}, which is an
infimum over a set of linear maps and is thus concave. We have
shown that g2 is concave and non-decreasing, which implies
that −g2 is convex and non-increasing in its argument z. This
allows us to use Lemma 10 to conclude that the composition
−g2◦λ2 is also convex, because −g2 is non-increasing in all of
its arguments and h is concave. All of this implies cmaxi g1i

−
g2 ◦ h is a convex function and thus cmaxi g1i

− g2 ◦ h ≤ 0
is a convex constraint. Since the cost function and all other
constraints are also convex, Problem 2 is a convex optimization
problem.

