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optimization, and its goal is to assign some number of workers (the weapons) to some number

of tasks (the targets). Classical approaches for this problem typically use a centralized planner

leading to a single point of failure and often preventing real-time re-planning as conditions

change. This paper introduces a new approach for distributed, autonomous assignment planning

executed by the weapons where each weapon is responsible for optimizing over distinct subsets

of the decision variables. A continuous, convex relaxation of the associated cost function and

constraints is introduced, and a distributed primal-dual optimization algorithm is developed

that will be shown to have guaranteed bounds on its convergence rate, even with asynchronous

computations and communications. This approach has several advantages in practice due to its

robustness to asynchrony and resilience to time-varying scenarios, and these advantages are

exhibited in experiments with simulated and physical commercial off-the-shelf ground robots as

weapon surrogates that are shown to successfully compute their assignments under intermittent

communications and unexpected attrition (loss) of weapons.
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Nomenclature
𝐵 bounded delay parameter further defined in Assumption 1

𝐶𝑖
𝑗

times at which primal updates are sent by worker 𝑖 to worker 𝑗

𝐷 subset of natural numbers that determines the times 𝑘 = 𝑡𝐵, 𝑡 ∈ 𝐷, when all workers perform dual updates

I set containing the indices of all workers

𝑘 iteration count used by all workers for their primal and dual updates

𝐾 𝑖 set of times at which worker 𝑖 ∈ I performs primal updates

𝑙 number of tasks/targets

𝑚 number of workers/weapons

M set defined by {a ∈ R𝑚+ : ∥a∥1 ≤ ∑ℓ
𝑗=1𝑉 𝑗 }

M𝑖 set defined by {a ∈ R+ : a ≤ ∑ℓ
𝑗=1𝑉 𝑗 }

𝑃𝑘 [𝑖 ], 𝑗 probability weapon 𝑖 destroys target 𝑗

𝑃𝑘 [𝑖 ], 𝑗 probability weapon 𝑖 arrives to and destroys target 𝑗

𝑡 natural number from the set 𝐷 that determines the time 𝑘 = 𝑡𝐵 when all workers compute their dual updates

𝑉 𝑗 value of target 𝑗

x𝑖 worker 𝑖’s copy of the primal variable x

x𝑖[ 𝑗 ] worker 𝑖’s value for the primal block 𝑗

x̂𝜿 primal component of the saddle point (x̂𝜿 , �̂�𝜿) of 𝐿𝜿

𝑋 constraint set defined by [0, 1]𝑚ℓ

𝑋𝑖 constraint set defined by [0, 1]ℓ

𝛼 primal regularization parameter in 𝐿𝜿

𝛿 dual regularization parameter in 𝐿𝜿

𝛾 primal stepsize

𝜿 pair of regularization parameters (𝛼, 𝛿)

𝝁𝑖 worker 𝑖’s copy of the dual variable 𝝁

`𝑖
𝑖

worker 𝑖’s dual entry 𝑖, which it is responsible for updating

�̂�𝜿 dual component of the saddle point (x̂𝜿 , �̂�𝜿) of 𝐿𝜿

𝜌 dual stepsize

𝜏𝑖
𝑗
(𝑘) time at which worker 𝑗 originally computed the primal update received by worker 𝑖 at time 𝑘

I. Introduction

Since it was first posed in 1958 [1] the weapon-target assignment (WTA) problem has been a well-studied research

problem in the fields of combinatorial optimization and operations research more broadly [2–5]. Given a set of
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weapons of known probabilistic effectiveness and a set of targets of known value, the WTA problem seeks to assign each

weapon to a target in a way that minimizes the post-engagement expected value of all surviving targets. This problem

has obvious applications for military planners, but has also been used for (and is similar to) numerous other resource

allocation problems such as emergency management [6] and advertising [7]. The WTA problem has been known to be

NP-complete since 1986 [8], making it fertile ground for research into heuristic optimization algorithms with lower

complexity [9–11]. While the general structure of the WTA problem admits many variations, such as partial-information

WTA [12], multi-layer problems with targets, weapons, and counter-weapons [13], multi-task implementations that

incorporate target identification, verification, and engagement [14], or sequential engagement WTA [15, 16], this paper

will focus on expanding the classic problem formulation. Readers are referred to [17] for an overview of exact and

heuristic approaches to the WTA problem. The original form of WTA was quasi-static in the sense that the targets and

their values do not change throughout the engagement, nor do the properties of the weapons. The original solution (and

many solutions thereafter) was also centralized in the sense that a single planner computed all weapon assignments.

While centralized planning may be well-suited to some scenarios, e.g., non-autonomous air-to-ground munitions,

modern and future munitions have the ability to plan and act autonomously, which means that centralized planning is

not required. Indeed it may fail to fully exploit the decision-making capabilities of individual weapons. Moreover,

centralized pre-planning may work well in static conditions, though unexpected changes such as the attrition (loss during

flight) of a weapon would typically require re-planning, which can be time-consuming due to the computational burden

it imposes. Re-planning is also difficult to coordinate in a centralized way because it can be difficult to communicate

with and coordinate weapons when they are already deployed and spread far apart. Algorithmically, it has been shown

that in some scenarios where centralized and decentralized approaches are both feasible, the decentralized approach

performs measurably better [18]. And while the WTA problem is easily specified in a centralized way, modern autonomy

applications increasingly take place in unknown, unstructured, and contested environments, all of which suggest that the

use of a centralized planner is either infeasible or undesirable because it creates a single point of failure and does not

rapidly react to changing conditions.

In particular, so-called “fire and forget” approaches do not enable dynamically changing assignments of weapons,

which does not allow weapons to change course during deployment and does not allow weapons to react to the success or

failure of other weapons in achieving their objectives. Given that WTA planning is probabilistic, this lack of reactivity

may result in the use of more weapons than necessary. For example, suppose that several weapons are assigned to a

target to achieve the desired probability of success at planning time. The first one or two weapons may destroy the target

at runtime, but the lack of re-planning means that the other weapons will continue as planned and attack a target that has

already been destroyed. Similarly, if weapon attrition is expected, then five weapons may be assigned to simultaneously

arrive at a single target when only two are actually required to reach the target to meet mission objectives. If no weapons

are attrited early in the run, then there may be benefit in reassigning one more of those weapons, but a “fire and forget”
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approach does not provide this capability. The inability to re-plan on the fly also means that weapons cannot modify

their assignments in response to attrition among weapons assigned to other, higher priority targets, e.g., due to accidents

or adversarial countermeasures, all of which can also lead to poor outcomes. One way to avoid such inefficiencies is

to craft an online algorithm that can react to changing conditions by re-assigning weapons, yet standard centralized

approaches will be unable to do so under realistic conditions.

In recent years, there has emerged significant interest in decentralized decision systems in control theory [19],

optimization [20], and other fields [21]. Decentralized systems have the advantage that they do not require a centralized

coordinator in order for each agent to act. Instead, agents use point-to-point interactions for decision-making. A

variety of approaches have fit the WTA problem into a decentralized framework, such as evolutionary algorithms [22],

game-theoretic formulations [23], parallel simulated annealing [20], ant colony algorithms [24], heuristic methods [25],

nested partitions [26], mixed-integer linear programming [27], and auction algorithms [28]. Additionally, decentralized

approaches are used for other components of autonomous weapons systems such as simultaneous interception of a target

[29] and collision avoidance [30], which indicates that decentralized tasking algorithms can be incorporated into a

holistic control framework. While distributed algorithms for constrained optimization problems have been developed

for particular classes of problems [38] or limited models of asynchrony [39], many asynchronous algorithms apply only

to unconstrained problem formulations [40, 41]. This leads to a need for a WTA problem formulation that is easy to

distribute and an algorithm that tolerates asynchrony and solves constrained optimization problems of a more general

form.

Given the advantages of a decentralized approach, in this paper a decentralized solver for the WTA problem is

developed that eliminates any dependence upon a central coordinator and provides the ability to re-plan on-the-fly in

response to attrition among weapons. The contributions of this paper include: a) a continuous convex relaxation of the

classic WTA problem; b) the development of a distributed algorithm that tolerates arbitrarily large bounded delays; c)

the derivation of explicit convergence rates that bound the distance from the relaxed problem’s solution; and d) the

demonstration of results in both simulated and hardware environments. Specifically, this paper has the advantage of

explicitly considering the practical challenges inherent in asynchronous communications and computations among

agents. First, a continuous convex relaxation of the classic WTA problem is presented that enables the use of convex

optimization techniques to solve it. Then a distributed algorithm is developed for the constrained convex optimization

problem that results from the relaxation. This algorithm is a first-order decentralized primal-dual algorithm, and all

primal communications and computations are allowed to be asynchronous while some occasional coordination is

required with dual updates. In contrast to existing averaging-based approaches in which all agents update all decision

variables [31–37], this algorithm solves problems with inequality constraints and does so using a block-based update

law [31, 42–44] in which each primal variable and each dual variable is updated by only a single agent. To the

best of our knowledge, the only existing method of this class that permits asynchrony is earlier work by two of the
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authors [45, 46]. The current paper extends that work to eliminate persistent errors in convergence and accommodates

problems whose objective function does not have a diagonally dominant Hessian matrix (such as the one derived in this

paper). Convergence rates are derived to bound the distance of this algorithm to a saddle point of the Lagrangian of

the relaxed problem, and this point furnishes a solution to the original problem. Experimental implementations use a

combination of commercial off-the-shelf (COTS) ground robots and simulated ground robots as weapon surrogates.

Results illustrate the success of this algorithm both under static conditions and in a scenario in which weapons re-plan

on-the-fly in response to weapon attrition by updating optimal or sub-optimal assignments that were computed before

attrition occurred.

The paper is organized as follows. Preliminaries on the classic WTA problem formulation are provided in Section II.

Section III provides the derivation of the continuous convex relaxation of the classic WTA problem formulation. The

decentralized algorithm is presented and convergence rates are derived in Section IV. All experimental results are

included in Section V. Finally, Section VI concludes and presents possible avenues for future research.

II. Preliminaries and Problem Statement
This section briefly recounts the standard WTA problem formulation, and the next section will detail its convex

relaxation. The objective of the WTA problem is to optimally assign some number of weapons to engage each of a finite

set of targets (where each weapon can engage at most one target) in order to minimize the expected post-engagement

survival value of the targets. This requires three pieces of information: (i) the value of each target, which is𝑉 𝑗 for target 𝑗 ;

(ii) the effectiveness of weapon 𝑖 against target 𝑗 for all 𝑖 and 𝑗 , which is formalized by the probability 𝑃𝑘 [𝑖 ], 𝑗 ∈ [0, 1] that

weapon 𝑖 destroys target 𝑗 ; and (iii) an accurate model of how collaboration among weapons impacts their effectiveness.

This work uses the standard assumption that the cumulative likelihood of a given target being destroyed can be calculated

by treating each weapon’s engagement as an independent event.

Consider assigning 𝑚 weapons to ℓ targets. Given that the WTA problem can apply to broader worker/task

assignment problems, the targets will be referred to as “tasks” and the weapons as “workers.” With this terminology,

“engaging” a target is broadened to “engaging in” a task, and “destroying” a target is replaced with “completing” a task.

For worker 𝑖, the vector x[𝑖 ] ∈ Rℓ gives its assignments. Specifically,

𝑥 [𝑖 ], 𝑗 =


1 worker 𝑖 engages in task 𝑗

0 otherwise
.

Each worker can engage in only one task and
∑ℓ

𝑗=1 𝑥 [𝑖 ], 𝑗 = 1. Combining these features gives the following standard

problem formulation for all workers and tasks.

Problem 0 (Preliminary; no relaxation) Consider 𝑚 workers and ℓ tasks. Suppose V ∈ Rℓ is given, where 𝑉 𝑗 is the
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value of task 𝑗 , along with 𝑃𝑘 ∈ [0, 1]𝑚×ℓ , where 𝑃𝑘 [𝑖 ], 𝑗 is the probability that worker 𝑖 completes task 𝑗 when it

engages in task 𝑗 . Then

minimize
x

ℓ∑︁
𝑗=1
𝑉 𝑗

𝑚∏
𝑖=1

(
1 − 𝑃𝑘 [𝑖 ], 𝑗𝑥 [𝑖 ], 𝑗

)
subject to x ∈ {0, 1}𝑚ℓ ,

ℓ∑︁
𝑗=1
𝑥 [𝑖 ], 𝑗 = 1 for all 𝑖. ♢

In this paper, each worker computes its own assignment. Mathematically, worker 𝑖 computes the optimal value

of the vector x[𝑖 ] ∈ Rℓ . Problem 0 is relaxed in the next section to enable the implementation and analysis of this

decentralized approach.

III. Derivation of Convex Relaxation
The WTA formulation in Problem 0 is known to be NP-hard, and a convex relaxation will enable both efficient

solutions and the development of a decentralized algorithm for solving it in Section IV. The goal of the relaxation is

to develop an objective function that is both continuous and convex. The continuity requirement is easily satisfied

by changing the constraints on the primal variables in Problem 0 from the binary set {0, 1} to the interval [0, 1].

Then 𝑥 [𝑖 ], 𝑗 ∈ [0, 1] is regarded as the portion of “effort” expended by worker 𝑖 on engaging in task 𝑗 . This produces the

relaxed cost function

𝐶 (x) =
ℓ∑︁
𝑗=1
𝑉 𝑗

𝑚∏
𝑖=1

(
1 − 𝑃𝑘 [𝑖 ], 𝑗𝑥 [𝑖 ], 𝑗

)
, where x =

©«
x[1]

...

x[𝑚]

ª®®®®®®®¬
∈ [0, 1]𝑚ℓ , x[𝑖 ] ∈ [0, 1]ℓ , and 𝑥 [𝑖 ], 𝑗 ∈ [0, 1] . (1)

If the minimizer of the relaxed cost takes only values in {0, 1}, then it produces the same value as the original un-relaxed

cost.

Unfortunately, 𝐶 in Eq. (1) is non-convex in x, which will make it difficult to find a global minimum. To make it

convex and preserve its equality to the un-relaxed cost on {0, 1}, observe that 𝑥 [𝑖 ], 𝑗 ∈ {0, 1} gives

1 − 𝑃𝑘 [𝑖 ], 𝑗𝑥 [𝑖 ], 𝑗 =
(
1 − 𝑃𝑘 [𝑖 ], 𝑗

) 𝑥[𝑖 ], 𝑗 .
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Then, replacing each term of the form 1−𝑃𝑘 [𝑖 ], 𝑗𝑥 [𝑖 ], 𝑗 with
(
1−𝑃𝑘 [𝑖 ], 𝑗

) 𝑥[𝑖 ], 𝑗 , the relaxed cost function can be written as

𝑓 (x) =
ℓ∑︁
𝑗=1
𝑉 𝑗

𝑚∏
𝑖=1

(
1 − 𝑃𝑘 [𝑖 ], 𝑗

) 𝑥[𝑖 ], 𝑗 . (2)

Lemma 1 The cost function 𝑓 in Eq. (2) is convex in x.

Proof: Define the function ℎ 𝑗 (x) =
∏𝑚

𝑖=1
(
1 − 𝑃𝑘 [𝑖 ], 𝑗

) 𝑥[𝑖 ], 𝑗 . Then 𝑓 (x) = ∑ℓ
𝑗=1𝑉 𝑗ℎ 𝑗 (x), where 𝑉 𝑗 ≥ 0 for all 𝑗 . That

is, 𝑓 is a non-negatively weighted sum of the ℎ 𝑗 ’s, and thus convexity of each ℎ 𝑗 will imply convexity of 𝑓 . Next,

log ℎ 𝑗 (x) =
𝑚∑︁
𝑖=1

𝑥 [𝑖 ], 𝑗 log
(
1 − 𝑃𝑘 [𝑖 ], 𝑗

)
,

which is linear in x. Then log ℎ 𝑗 is convex in x, and the function ℎ 𝑗 is log-convex. Log-convexity implies convexity [47,

Section 3.5], and thus each ℎ 𝑗 is convex, which implies that 𝑓 is. ■

Next constraints are relaxed. For all 𝑖 the un-relaxed problem has 𝑥 [𝑖 ], 𝑗 = 1 for at most one 𝑗 , and all other entries

of x[𝑖 ] equal zero. This constraint on the un-relaxed problem can be restated as
∑ℓ

𝑗=1 𝑥 [𝑖 ], 𝑗 ≤ 1 for all 𝑖. This constraint

is kept in the relaxed problem, which ensures that no worker can spend arbitrarily large effort on any given task. The set

constraint 𝑥 [𝑖 ], 𝑗 ∈ {0, 1} is then simply omitted. The full relaxed problem statement can now be given:

Problem 1 (Relaxed problem) Given V ∈ Rℓ , 𝑃𝑘 ∈ [0, 1]𝑚×ℓ , and 𝑋 = [0, 1]𝑚ℓ ,

minimize
x

𝑓 (x) =
ℓ∑︁
𝑗=1
𝑉 𝑗

𝑚∏
𝑖=1

(
1 − 𝑃𝑘 [𝑖 ], 𝑗

) 𝑥[𝑖 ], 𝑗
subject to x ∈ 𝑋,

𝑔(x) :=

©«

∑ℓ
𝑗=1 𝑥 [1], 𝑗 − 1

...∑ℓ
𝑗=1 𝑥 [𝑚], 𝑗 − 1

ª®®®®®®®¬
≤ 0,

where the inequality holds component-wise.

The value of the relaxed cost function equals the un-relaxed cost function when 𝑥 [𝑖 ], 𝑗 ∈ {0, 1}. If the optimum of

the relaxed problem consists of ones and zeros, then it is clearly also the optimal solution to the original problem. For

relaxed solutions that are not in {0, 1}, Section V demonstrates in simulations and experiments that using the maximum

effort as the task assignment often provides the optimum. When it does not provide the optimum, the results have

appeared to be near-optimal and far better than fixed assignments, specifically in the case of attrition, which will be

discussed in Section V. Additionally, it is emphasized that 𝑓 is not inherently strongly convex and the Hessian matrix
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of 𝑓 is not diagonally dominant. Thus, previous work by two of the authors [45, 46] does not apply and a new algorithm

must be developed.

A special case of interest is that of homogeneous workers or tasks. Homogeneous workers are those who have the

same 𝑃𝑘 [𝑖 ], 𝑗 values for all tasks 𝑗 and homogeneous tasks have the same values 𝑉 𝑗 and 𝑃𝑘 [𝑖 ], 𝑗 for all workers 𝑖. It

is important to highlight that when homogeneous workers or tasks are considered, the relaxed cost function does not

have optimums residing in {0, 1}. Instead the optima tend to be equally divided among the homogeneous options. For

example, considering a simple case of one weapon against two identical targets, the weapon will have assignments

of 0.5 for both targets, leading to a deadlock. As duplicated weapons/workers or targets/tasks are a common occurrence,

especially in the context of WTA, one remedy is to use 𝑃𝑘 values that include the probability of arrival, i.e., adjust

𝑃𝑘 due to attrition risk or as small artificial hedge. These modifications to 𝑃𝑘 may be distance-dependent, path

dependent, or based on something else entirely, and can avoid homogeneity allowing full assignments to be achieved.

For this paper, 𝑃𝑘 values are adjusted to include the probability of arrival using a simple function of distance and are

denoted 𝑃 [𝑖 ], 𝑗 (Arrival) for weapon 𝑖 arriving at target 𝑗 . This gives the probability of arrival and kill defined by

𝑃 [𝑖 ], 𝑗 (Arrival and Kill) := 𝑃𝑘 [𝑖 ], 𝑗 = 𝑃𝑘 [𝑖 ], 𝑗𝑃 [𝑖 ], 𝑗 (Arrival). (3)

This implementation is presented in Section V and is shown to avoid deadlock due to partial assignments.

IV. Decentralized Optimization
This section presents the distributed algorithm used to solve Problem 1, and it proves convergence to an optimum

under asynchronous primal communications and computations and intermittent dual computations. In particular, it is

shown that Problem 1 is equivalent to a certain Lagrangian saddle point problem, and then a decentralized algorithm is

developed to compute saddle points.

A. Lagrangian Saddle Point Formulation

Problem 1 has several properties that will be leveraged in the forthcoming analysis.

Remark 1 Lemma 1 showed that the objective function 𝑓 in Problem 1 is convex, and by inspection it is also twice

continuously differentiable. Then its Hessian exists and is a continuous function of x. The constraint set 𝑋 is compact

because it is a product of compact intervals. The continuity of the Hessian of 𝑓 and compactness of 𝑋 imply that the

Hessian of 𝑓 is bounded over 𝑋 , and thus ∇ 𝑓 is Lipschitz over 𝑋 . The constraints 𝑔 satisfy Slater’s condition [48,

Assumption 6.4.2], i.e., there exists a Slater point x̄ such that 𝑔(x̄) < 0. In particular, x̄ = 0 is a Slater point for 𝑔.

These conditions are known [49] to imply that a solution to Problem 1 can be found by computing a saddle point of
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its associated Lagrangian. For the Lagrangian 𝐿 (x, 𝝁) = 𝑓 (x) + 𝝁𝑇𝑔(x) the point

(
x̂, �̂�

)
:= arg min

x∈𝑋
arg max
𝝁∈R𝑚+

𝐿 (x, 𝝁)

produces �̂� as a solution to Problem 1. Here, x is referred to as the primal variables, 𝝁 is referred to as the dual variables,

and the set R𝑚+ is the non-negative orthant of R𝑚. One well-known centralized algorithm to compute saddle points is the

seminal Uzawa iteration [50], which simultaneously performs gradient descent in x and gradient ascent in 𝝁.

To solve Problem 1 in a distributed way, a similar algorithm will be developed that distributes computations among

workers and also provides robustness to asynchrony. It has been shown [42, 45, 51–53] that both strong convexity in x

and strong concavity in 𝝁 help provide robustness to asynchrony [31]. Although 𝐿 (·, 𝝁) is not strongly convex (because

neither 𝑓 nor 𝑔 is) and 𝐿 (x, ·) not strongly concave (because it is affine in 𝝁), these properties can be provided via

regularization. A Tikhonov regularization [54] with parameters 𝜿 = (𝛼, 𝛿) gives the regularized Lagrangian

𝐿𝜿 (x, 𝝁) = 𝑓 (x) + 𝛼
2
∥x∥2 + 𝝁𝑇𝑔(x) − 𝛿

2
∥𝝁∥2, (4)

where 𝛼 > 0 and 𝛿 > 0 are, respectively, the primal and dual regularization parameters. The function 𝐿𝜿 (·, 𝝁)

is 𝛼-strongly convex for all 𝝁, and 𝐿𝜿 (x, ·) is 𝛿-strongly concave for all x. These properties imply that 𝐿𝜿 has a unique

saddle point, denoted (x̂𝜿 , �̂�𝜿). This saddle point is not equal to that of the unregularized 𝐿. However, there exist bounds

on the distance between the saddle points of 𝐿 and 𝐿𝜿 [54] that show that the error induced by regularizing is small

as long as 𝛼 and 𝛿 are small relative to other problem parameters. Therefore, small values of 𝛼 and 𝛿 will be used to

ensure that agents compute the saddle point of 𝐿𝜿 with negligible error.

As described above, all primal computations and communications can be asynchronous. The only assumption

imposed on them is the following.

Assumption 1 (Bounded Delays) Let 𝐾 𝑖 be the set of times at which worker 𝑖 performs primal updates and 𝜏𝑖
𝑗
(𝑘) be

the time at which worker 𝑗 originally computed the primal update received by worker 𝑖 at time 𝑘 . There exists 𝐵 ≥ 1

such that

• {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝐵 − 1} ∩ 𝐾 𝑖 ≠ ∅, for all 𝑘 ≥ 0 and all 𝑖;

• 0 ≤ 𝑘 − 𝜏𝑖
𝑗
(𝑘) ≤ 𝐵 − 1, for all 𝑘 ∈ 𝐾 𝑖 , all 𝑗 , and all 𝑖. △

This ensures that no entry of a worker’s primal block was computed more than 𝐵 iterations prior.

To aid in the forthcoming analysis, a compact subset of R𝑚+ is computed that contains the dual component of the

saddle point of 𝐿𝜿 , which is �̂�𝜿 .
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Lemma 2 Consider the regularized Lagrangian 𝐿𝜿 in Eq. (4) and let (x̂𝜿 , �̂�𝜿) denote its unique saddle point. Then

�̂�𝜿 ∈ M :=

{
𝝁 ∈ R𝑚+ : ∥𝝁∥1 ≤

ℓ∑︁
𝑗=1
𝑉 𝑗

}
.

Proof: The discussion in [51, Section II-C] shows that for any Slater point x̄ of 𝑔

�̂�𝜿 ∈ M =

𝝁 ∈ R𝑚+ : ∥𝝁∥1 ≤
𝑓 (x̄) + 𝛼

2 ∥x̄∥2 − min
x∈𝑋

𝑓 (x)

min
1≤𝑝≤𝑚

−𝑔𝑝 (x̄)

 . (5)

The non-negativity of 𝑓 in Problem 1 implies non-negativity of minx∈𝑋 𝑓 (x). Remark 1 gives x̄ = 0. Noting

that 𝑔(0) = (−1, . . . ,−1)𝑇 and min
1≤𝑝≤𝑚

−𝑔𝑝 (x̄) = 1, the upper bound in Eq. (5) can be bounded via

𝑓 (x̄) + 𝛼
2 ∥x̄∥2 − min

x∈𝑋
𝑓 (𝑥)

min
1≤𝑝≤𝑚

−𝑔𝑝 (x̄)
≤ 𝑓 (0) − min

x∈𝑋
𝑓 (x) ≤ 𝑓 (0),

and the lemma follows. ■

Thus, Problem 1 is equivalent to the following saddle point problem over the compact domain 𝑋 ×M.

Problem 2 Let Assumption 1 hold and fix 𝛼, 𝛿 > 0. For 𝐿𝜿 defined in Eq. (4), asynchronously compute

(
x̂𝜿 , �̂�𝜿) := arg min

x∈𝑋
arg max
𝝁∈M

𝐿𝜿 (x, 𝝁). ♢

B. Accuracy of Solutions

This section shows that the solutions to Problems 1 and 2 are close to those of the original WTA problem given in

Problem 0. This is done in two ways: through comparison of all three solutions for small-scale engagements, and through

a comparison of the solution to Problem 2 to Problem 0 for a large-scale engagement. First, the solution to Problem 0 is

compared to those of Problems 1 and 2. For a five-weapon, four-target scenario 𝑃𝑘 values were randomly generated from

a uniform distribution on [0.2, 0.9] and target values were randomly generated from a uniform distribution on [2, 10].

A brute-force method was used to calculate the solution to Problem 0 by iterating over all possible assignments. The

solution to Problem 1 was calculated using SciPy’s minimize() solver [55, 56]. Finally, the solution to Problem 2 was

calculated using centralized gradient descent (which is essentially equivalent to a centralized, synchronous version of

Algorithm 1) with regularization parameters set to 𝛼 = 𝛿 = 0.01. For each engagement, the solutions to Problems 1

and 2 were compared to the solution to Problem 0. This comparison was repeated one thousand times with 𝑃𝑘 and 𝑉

randomly generated each time. Results are displayed in Fig. 1 in the form of overlaid histograms. The two histograms
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Fig. 1 Histogram showing the error ratio in the solutions to Problems 1 and 2 relative to Problem 0 across 1, 000
randomly generated scenarios. These errors are shown to typically be small, which indicates that Problems 1
and 2 well-approximate Problem 0.

show the fraction of total runs that achieved a given relative error in the expected values. A value of zero means that the

solution to Problem 1 or 2 matches that of Problem 0 and a value of 0.5 means that the solution to Problem 1 or 2 gave a

cost that was 50% higher than the solution to Problem 0 for that scenario. As evidenced by the figure, the histogram is

clustered near zero which indicates that the solutions to both Problems 1 and 2 are close to the solution to Problem 0.

The solution to Problem 2 was also compared to the solution to Problem 0 for large-scale engagement scenarios.

In particular, scenarios were considered with 100 weapons and 40 targets, with 𝑃𝑘 values drawn uniformly from the

interval [0.2, 0.9] and target values drawn uniformly from [2, 10]. To solve Problem 0, two different solvers were

used: an implementation of the graph-based optimization algorithm from [9] and Ipopt [57], which was called using

the modeling library Pyomo [58, 59]. These two solutions to Problem 0 were compared to the solution to Problem 2

computed using centralized gradient descent. For Problem 0, the solution generated by the graph-based algorithm had

an expected value of 1.35 and the solution generated by Ipopt had an expected value of 1.44. The gradient descent

solution had an expected value of 1.87 for Problem 2. To put these numbers in context, the worst-case expected value

is 224.4 (total value of all targets). One million random candidate assignments were generated to approximate the

expected value of an arbitrary assignment and a mean of 56.2 was found. Thus, while the expected value associated

with the solution to Problem 2 was slightly higher than that associated with the solutions for Problem 0, the difference

is negligible when considered as a 97.6% (graph-based), 97.4% (Ipopt), and 96.7% (gradient descent) decrease in

11



expected value relative to the random assignment. Therefore, we proceed with solving Problem 2 with the understanding

that it is an effective surrogate for Problem 0.

The algorithm for solving Problem 2 is presented next.

C. Asynchronous Primal-Dual Algorithm with Bounded Delays

Problem 2 is solved using a first-order gradient-based method because such methods naturally offer some robustness

to asynchrony and are simple to implement. Computations are assigned to the workers as follows.

Worker 𝑖 is responsible for updating the 𝑖𝑡ℎ block of the primal variable 𝑥 and the 𝑖𝑡ℎ entry of the dual variable 𝝁.

This primal block is x[𝑖 ] , which is simply worker 𝑖’s own assignments to each task, and it must lie in the set 𝑋𝑖 := [0, 1]ℓ .

The dual variable `𝑖 encodes the constraint
∑ℓ

𝑗=1 𝑥 [𝑖 ], 𝑗 ≤ 1, which bounds worker 𝑖’s effort. There are ℓ tasks and

efforts assigned to individual tasks take values in [0, 1], which gives x[𝑖 ] ∈ [0, 1]ℓ . The optimal value of the dual

variable `𝑖 must lie in the set

M𝑖 :=
a ∈ R+ : a ≤

ℓ∑︁
𝑗=1
𝑉 𝑗

 .
Worker 𝑖 will project its primal updates onto 𝑋𝑖 and its dual updates onto M𝑖 in the forthcoming algorithm.

Operations in the primal and dual spaces are next separately examined. Then a formal algorithm statement is given.

(i) Computations and Communications of Updates to Primal Variables All workers index their computations with

the same iteration counter 𝑘 ∈ N, but each one may or may not compute a new value of its decision variable at each tick

of 𝑘 . The set 𝐾 𝑖 ⊆ N denotes the subset of times at which worker 𝑖 ∈ I computes an update. Assumption 1 enforces

that there are at most 𝐵 timesteps between consecutive primal updates, and there is not assumed to be any relationship

between the set of times at which worker 𝑖 performs updates and the set of times at which worker 𝑗 performs updates,

i.e., 𝐾 𝑖 need not have any relationship to 𝐾 𝑗 for 𝑖 ≠ 𝑗 .

Workers also communicate their updated primal variables asynchronously. The set 𝐶𝑖
𝑗
⊆ N denotes the infinite

set of times at which worker 𝑖 sends updated values of x[𝑖 ] to worker 𝑗 (recall that they can be received later due to

asynchrony). The times at which worker 𝑖’s variables are communicated to other workers may differ from those of

worker 𝑗 , i.e., 𝐶𝑖
𝑗

need not have any relationship to 𝐶𝑖
𝑟 for 𝑗 ≠ 𝑟. These sets are also only used for analysis, and, in

particular, they need not be known to the workers. The only assumption in force remains Assumption 1, which simply

ensures that a worker’s primal blocks were not computed more than 𝐵 iterations prior.

(ii) Computations of Updates to Dual Variables To analytically establish dual convergence, all workers are required

to periodically update their dual variable entries. Formally, all workers must perform a single update of their dual

variable when 𝑘 = 𝑡𝐵 for all 𝑡 ∈ 𝐷, where 𝐷 ⊆ N is some infinite subset. Updates at the times in 𝐷 are the only

coordination required among workers. These updates do not require a communication event to also occur at the same
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time. Thus, even if workers are in a communications-denied environment, the coordination is still able to proceed.

Practical implementation details will be discussed in Section V.

We note that while worker 𝑖 stores 𝝁𝑖 onboard, only its 𝑖𝑡ℎ entry, `𝑖
𝑖
, actually appears in its computations. Therefore,

workers do not exchange values of their dual variables. In Algorithm 1, the notation indicates that worker 𝑖 uses 𝝁𝑖 in its

computations, and this is done only to keep dimensions consistent. Only the value of `𝑖
𝑖
actually affects its computations,

and other entries of 𝝁𝑖 can be fixed, e.g., held constant at zero, for the duration of the algorithm.

Statement of Algorithm A formal statement of the primal-dual algorithm for solving Problem 2 follows, where ∇x[𝑖 ]

is the derivative with respect to the 𝑖-th block of x and Π𝑆 [y] denotes the Euclidean projection of the point y onto the

non-empty, compact, convex set 𝑆.

Algorithm 1 Distributed Gradient-Based Primal-Dual Optimization
Step 0: Initialize all workers with x(0) ∈ 𝑋 and 𝝁(0) ∈ M. Set 𝑘 = 0.

Step 1: For all 𝑖, 𝑗 ∈ I, if 𝑘 ∈ 𝐶𝑖
𝑗
, then worker 𝑖 sends x𝑖[𝑖 ] (𝑘) to worker 𝑗 .

Step 2: For all 𝑖 ∈ I, if 𝑘 ∈ 𝐾 𝑖 , worker 𝑖 executes the primal update

x𝑖[𝑖 ] (𝑘 + 1) = Π𝑋𝑖

[
x𝑖[𝑖 ] (𝑘) − 𝛾∇x[𝑖 ] 𝐿𝜿

(
x𝑖 (𝑘), 𝝁𝑖 (𝑘)

) ]
.

If 𝑘 ∉ 𝐾 𝑖 , then x𝑖[𝑖 ] (𝑘 + 1) = x𝑖[𝑖 ] (𝑘).

Step 3: For all 𝑖, 𝑗 ∈ I,

x𝑖[ 𝑗 ] (𝑘 + 1) =


x 𝑗

[ 𝑗 ] (𝜏
𝑖
𝑗
(𝑘 + 1)) worker 𝑖 receives a new value of x 𝑗

[ 𝑗 ] at time 𝑘 + 1

x𝑖[ 𝑗 ] (𝑘) otherwise
.

Step 4: Set 𝑘 := 𝑘 + 1.

Step 5: For all 𝑖 ∈ I, if 𝑘 = 𝑡𝐵 for 𝑡 ∈ 𝐷, worker 𝑖 executes the dual update

`𝑖𝑖 (𝑡𝐵) = ΠM𝑖

[
`𝑖𝑖 (𝑡𝐵 − 1) + 𝜌 𝜕𝐿𝜿

𝜕`𝑖

(
x𝑖 (𝑡𝐵), 𝝁𝑖 (𝑡𝐵 − 1)

)]
.

Step 6: Return to Step 1.

D. Primal Convergence

This section establishes primal convergence rates for a fixed dual variable. That is, convergence is analyzed for

computations of workers that are asynchronously performing gradient descent to minimize 𝐿𝜿
(
· , 𝝁(𝑡𝐵)

)
with 𝝁(𝑡𝐵)
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fixed. At times 𝑘 ∈ 𝐾 𝑖 after computing 𝝁(𝑡𝐵) and prior to the next dual update, worker 𝑖 runs

x𝑖[𝑖 ] (𝑘 + 1) = Π𝑋𝑖

[
x𝑖[𝑖 ] (𝑘) − 𝛾∇x[𝑖 ] 𝐿𝜿

(
x𝑖 (𝑘), 𝝁(𝑡𝐵)

) ]
to drive its iterates towards x̂𝜿 (𝑡𝐵) := arg min

x∈𝑋
𝐿𝜿 (x, 𝝁(𝑡𝐵)). Workers can perform computations asynchronously as long

as Assumption 1 is satisfied. Under this assumption, existing work in [60] can be leveraged to quantify convergence of

the primal variable.

Lemma 3 Let Assumption 1 hold, and consider using Algorithm 1 to solve Problem 2. Fix 𝑡 ∈ 𝐷 and let 𝑡 ′ be the

smallest element of 𝐷 that is greater than 𝑡. Fix 𝝁(𝑡𝐵) ∈ M and define x̂𝜿 (𝑡𝐵) = arg minx∈𝑋 𝐿𝜿 (x, 𝝁(𝑡𝐵)). Then for

workers executing Algorithm 1 for times 𝑘 ∈ {𝑡𝐵, 𝑡𝐵 + 1, . . . , 𝑡 ′𝐵}, there exists a scalar 𝛾1 > 0 such that for 0 < 𝛾 < 𝛾1

∥x(𝑡 ′𝐵) − x̂𝜿 (𝑡𝐵)∥ ≤ (1 − 𝑐𝛾)𝑡′−𝑡 ∥x(𝑡𝐵) − 𝑥𝜿 (𝑡𝐵)∥,

where 𝑐 is a positive constant, (1 − 𝑐𝛾) ∈ [0, 1).

Proof: See the appendix. ■

E. Dual Convergence

Lemma 3 quantifies the behavior of the primal variable between dual updates, and this subsection quantifies the

behavior of the dual variable when it is updated over time. The following lemma is first stated, and it will be used later

in the proof of the main convergence theorem.

Lemma 4 Let 𝝁1, 𝝁2 ∈ R𝑚+ . Then for any solutions x1 and x2 such that

x1 = arg min
x∈𝑋

𝐿𝜿 (x, 𝝁1) and x2 = arg min
x∈𝑋

𝐿𝜿 (x, 𝝁2)

the pairs (x1, 𝝁1) and (x2, 𝝁2) satisfy

(
𝝁2 − 𝝁1

)𝑇 (−𝑔(x2) + 𝑔(x1)
)
≥ 𝛼

𝑀2 ∥𝑔(x2) − 𝑔(x1)∥2,

where 𝑀 := max
x∈𝑋

∥∇𝑔(x)∥.

Proof: See Lemma 4.1 in [44]. ■

This lemma is used to upper bound the change in distance from the dual optimum after workers perform a dual

update in Step 5 of Algorithm 1.
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Theorem 1 Let Assumption 1 hold and let the dual stepsize 𝜌 > 0 in Algorithm 1 satisfy

𝜌 < min
{

2𝛼
𝑚ℓ + 2𝛼𝛿

,
2𝛿

1 + 𝛿2

}
.

Denote with 𝑡1 and 𝑡2 two consecutive times that dual updates have occurred, with 𝑡1 < 𝑡2 and 𝑡1, 𝑡2 ∈ 𝐷. When solving

Problem 2, the sequence of dual variables generated by Algorithm 1 satisfies

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ 𝑞𝑑 ∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝑞𝑑𝑞2(𝑡2−𝑡1)
𝑝 𝑚2ℓ2 + 2𝜌2𝑞𝑡2−𝑡1𝑝 𝑚2ℓ2,

where 𝑞𝑑 := (1−𝜌𝛿)2+𝜌2 ∈ [0, 1), 𝑞𝑝 := (1 − 𝑐𝛾) ∈ [0, 1), 𝑚 is the number of workers, and ℓ is the number of tasks.

Proof: See the appendix. ■

The terms 𝑞𝑑𝑞2(𝑡2−𝑡1)
𝑝 𝑚2ℓ2 and 2𝜌2𝑞𝑡2−𝑡1𝑝 𝑚2ℓ2 are dependent on input parameters and the number of primal iterations

that occur between dual updates. These terms may be reduced by allowing more time to elapse between dual updates,

which makes 𝑡2 − 𝑡1 larger and thus makes 𝑞𝑡2−𝑡1𝑝 smaller. These terms may also be reduced through the choice of input

parameters. For example, the last term may be reduced by simply choosing a small dual stepsize 𝜌. As intuition would

expect, there is an associated cost to scaling the algorithm to larger numbers of workers and tasks, which is reflected by

the 𝑚ℓ factor of both terms, and this term grows as the number of workers and/or number of tasks grows.

This theorem may be recursively applied to find the distance from the optimal dual variable at each 𝑘 such that 𝑘 = 𝑡𝐵

for some 𝑡 ∈ 𝐷. This is done next.

Theorem 2 Let Assumption 1 hold and consider the use of Algorithm 1 to solve Problem 2. Let the dual stepsize 𝜌 > 0

satisfy

𝜌 < min
{

2𝛼
𝑚ℓ + 2𝛼𝛿

,
2𝛿

1 + 𝛿2

}
.

Let 𝑡𝑛 denote the 𝑛𝑡ℎ entry in 𝐷 where 𝑡1 < 𝑡2 < · · · < 𝑡𝑛. That is, 𝑡𝑛𝐵 is the time at which the 𝑛𝑡ℎ dual update occurs

across all workers. Then workers executing Algorithm 1 generate dual variables that satisfy

∥𝝁
(
𝑡𝑛𝐵

)
− �̂�𝜿 ∥2 ≤ 𝑞𝑛𝑑 ∥𝝁(0) − �̂�𝜿 ∥2 +

(
𝑞𝑑𝑞

2
𝑝𝑚

2ℓ2 + 2𝜌2𝑞𝑝𝑚
2ℓ2) 1 − 𝑞𝑛+1

𝑑

1 − 𝑞𝑑
,

where 𝑞𝑑 = (1−𝜌𝛿)2+𝜌2 ∈ [0, 1), 𝑞𝑝 = (1 − 𝑐𝛾) ∈ [0, 1), 𝑚 is the number of workers, and ℓ is the number of tasks.
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Proof: Recursively applying Theorem 1 gives

∥𝝁(𝑡𝑛𝐵) − �̂�𝜿 ∥2 ≤ 𝑞𝑑 ∥𝝁(𝑡𝑛−1𝐵) − �̂�𝜿 ∥2 + 𝑞𝑑𝑞2(𝑡𝑛−𝑡𝑛−1)
𝑝 𝑚2ℓ2 + 2𝜌2𝑞𝑡𝑛−𝑡𝑛−1

𝑝 𝑚2ℓ2

≤ 𝑞2
𝑑 ∥𝝁(𝑡𝑛−2𝐵) − �̂�𝜿 ∥2 + 𝑞2

𝑑𝑞
2
𝑝𝑚

2ℓ2 + 2𝜌2𝑞𝑑𝑞𝑝𝑚
2ℓ2 + 𝑞𝑑𝑞2

𝑝𝑚
2ℓ2 + 2𝜌2𝑞𝑝𝑚

2ℓ2

≤ 𝑞𝑛𝑑 ∥𝝁(0) − �̂�𝜿 ∥2 + (𝑞𝑑𝑞2
𝑝𝑚

2ℓ2 + 2𝜌2𝑞𝑝𝑚
2ℓ2)

𝑛∑︁
𝑖=0

𝑞𝑖𝑑 ,

where the second inequality follows because 𝑡𝑛 − 𝑡𝑛−1 ≥ 1. Because 𝑞𝑑 ∈ [0, 1), summing the geometric series in the

last term gives the final result. ■

F. Overall Convergence

Now Lemma 3 and Theorem 2 can be combined to establish an upper bound on the distance from the primal

optimum at each time.

Theorem 3 Consider Problem 2 and let Assumption 1 hold. Let the dual stepsize 𝜌 > 0 satisfy 𝜌 < min
{

2𝛼
𝑚ℓ+2𝛼𝛿

, 2𝛿
1+𝛿2

}
.

Let 𝑡𝑛 denote the 𝑛-th entry in 𝐷 where 𝑡1 < 𝑡2 < · · · < 𝑡𝑛. That is, 𝑡𝑛𝐵 is the time at which the 𝑛𝑡ℎ dual update occurs

across all workers. Then workers executing Algorithm 1 generate primal iterates that satisfy

∥x(𝑡𝑛𝐵) − x̂𝜿 ∥ ≤ 𝑞𝑡𝑛−𝑡𝑛−1
𝑝

√
𝑚ℓ +

√
𝑚ℓ

𝛼

√︄
𝑞𝑛
𝑑
∥𝝁(0) − �̂�𝜿 ∥2 +

(
𝑞𝑑𝑞

2
𝑝𝑚

2ℓ2 + 2𝜌2𝑞𝑝𝑚2ℓ2) 1 − 𝑞𝑛+1
𝑑

1 − 𝑞𝑑
,

where 𝑞𝑝 = (1 − 𝑐𝛾) ∈ [0, 1), 𝑞𝑑 = (1−𝜌𝛿)2+𝜌2 ∈ [0, 1), 𝑚 is the number of workers, and ℓ is the number of tasks.

Proof: Following the steps in the proof of Theorem 2 in [52] gives

∥x(𝑡𝑛𝐵) − x̂𝜿 ∥ ≤ 𝑞𝑡𝑛−𝑡𝑛−1
𝑝

√
𝑚ℓ +

√
𝑚ℓ

𝛼
∥𝝁(𝑡𝑛𝐵) − �̂�𝜿 ∥.

Applying Theorem 2 (from the current paper) completes the proof. ■

Remark 2 The results in Theorem 3 illustrate a trade-off between the quality of final answer obtained and the rate of

convergence to that solution, particularly as influenced by the regularization parameters 𝛼 and 𝛿. As stated previously,

smaller regularizations lead to smaller regularization error [54]. In Theorem 3, this means that smaller values of 𝛼

and 𝛿 provide a solution that is closer to the solution to the unregularized problem, and thus such a solution is of higher

quality. However, the second term in Theorem 3 is pre-multiplied by 1
𝛼

, and small values of 𝛼 make this term large

and thus require more iterations to reach a solution. In addition, the dual contraction term 𝑞𝑑 is a function of 𝛿, with

smaller 𝛿 making 𝑞𝑑 larger. Thus, smaller values of 𝛼 and 𝛿 can give a solution of higher quality, but this solution

requires more iterations to reach, as quantified by Theorem 3. Similarly, from Theorem 3 we see that larger values of 𝛼

and 𝛿 give a lower-quality solution, but it can be reached in fewer iterations.
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V. Experimental Results
This section presents experimental results that illustrate the performance of Algorithm 1∗. While the results of

this paper may be used for any worker/task assignments, this section considers a weapon-target assignment (WTA)

problem specifically. Each weapon has a likelihood of killing a given target, which is the weapon’s “probability of

kill” for that target. The weapons work collectively to minimize the “total expected value” given by 𝑓 in Problem 1,

and Algorithm 1 is deployed on a combination of physical and simulated weapon surrogates, in this case physical and

simulated TurtleBots. The experiments we present provide experimental testing and validation of the actual execution of

the weapon-target assignments that are generated using Algorithm 1. Indeed, the outputs of Algorithm 1 (and other

WTA algorithms) are simply assignments of weapons to targets, but these assignments must actually be executed by

mobile autonomous agents with non-trivial dynamics. The robots we use provide a realistic representation of the types

of vehicles and types of dynamics one could deploy in a WTA application. Moreover, to demonstrate that our algorithm

can accommodate asynchrony among agents, running on robots gives a realistic test case in which asynchrony naturally

arises and thus provides an opportunity to illustrate the success of our developments in an actual deployment of the kind

for which they were designed.

The first scenario demonstrates a team of weapons cooperatively solving Problem 2 in real time in a physics

simulation environment. In the second scenario, the performance of Algorithm 1 is evaluated when considering a

larger number of weapons and targets. This scenario also accounts for homogeneous weapons and targets by adjusting

the 𝑃𝑘 values based on distance and associated attrition risk as discussed in Section III. The third scenario demonstrates

the benefits of the decentralized setup by attriting a weapon midway through the optimization to show that the other

weapons are able to react to and compensate for this loss.

A. Combined Simulation and Hardware Setup

Robot Operating System (ROS) [61] is used to enable message passing between weapon surrogates over a local

network, and Gazebo [62], a physics-based simulation environment, is used to model the behavior of a physical robot.

As described above, each weapon updates a subset of the primal variables and an entry of the dual variable that encodes

the constraint on its own assignments. The dual variable enforces the constraint that the sum of a weapon’s efforts should

not exceed one. The primal variables are the portion of effort a weapon should expend on each target. The arg max over

these efforts is then used to determine a target assignment for each weapon. Although this type of approach cannot be

used for all relaxations of discrete optimization problems, it is shown to provide an appropriate level of performance in

the WTA problems considered and does so while tolerating asynchronous primal communications and computations.

The primal variables are initialized to a uniform engagement, equal to 1
ℓ

for each entry, and the dual variables are

initialized to zero. To simulate asynchronous communications, each weapon generates a random time delay (upper
∗Code for this section may be found at https://github.com/uf-reef-avl/distributed_wta/.
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(a) (b)

Fig. 2 (a) Screenshot of the Gazebo Environment. (b) Photo of the ground robots used for the attrition scenario.

bounded by 𝐵) between communications of its primal variables. After its most recent update has been communicated,

each weapon samples a uniform distribution with the primal communication delay bounds to generate a new time delay

between its communications to other agents. The computer clock is used to coordinate dual updates periodically (Step 5

of Algorithm 1) where all weapons update their dual variables. As discussed in Section IV, these coordinated updates

do not require coordinated communications and unless otherwise noted, this coordination occurs every 𝐵 seconds.

Although outside the scope of this effort, it could also be assumed that weapons use GPS for time, that communications

(when they occur) include a time transfer capability that help all system clocks maintain an accurate time, or that over

the duration of the mission the individual weapons have high enough quality clocks that clock drift is not a concern.

For a hardware implementation, each weapon is a ground robot that runs the optimization algorithm onboard an

Intel NUC with an Intel i5 processors. The simulated weapons are also represented as ground robots in Gazebo, and the

computations for all the simulated weapons run onboard a laptop computer with an Intel i9 processor. The weapons and

targets are visualized using RViz. Figure 2 shows a screenshot of the Gazebo screen (in Fig. 2a) and a photo of the

hardware weapons (Fig. 2b) interacting during a test run.

B. Simulated Baseline Scenario

The first scenario simulates a team of five weapons being assigned to four targets with parameters given in Table 1.

The importance of target 𝑗 (its value, 𝑉 𝑗) and the likelihood of a target being killed by weapon 𝑖 when engaging it

(probability of kill, 𝑃𝑘 [𝑖 ], 𝑗 ) were created to be heterogeneous to allow the use of a constant 𝑃𝑘 throughout the scenario

rather than adjusting it to include the probability of arrival.

Figure 3a shows the evolution in the assignments of each weapon, which is computed as arg max 𝑗 𝑥 [𝑖 ], 𝑗 for each

weapon 𝑖 at each iterate. Figure 3b shows the projected 𝑃𝑘 for each of the four targets over the duration of the simulation.

The reported 𝑃𝑘 at a given time is a function of the weapons currently assigned to that particular target at that time and

the weapon’s associated 𝑃𝑘 value for that particular target. The final assignments at the end of the simulation were

1-2-2-4-3, meaning Weapon 1 was assigned to Target 1, Weapon 2 was assigned to Target 2, and so on. The optimality
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Table 1 Parameters used for the simulated baseline scenario

Parameter Value

𝑃𝑘



0.8 0.5 0.1 0.1
0.6 0.5 0.1 0.1
0.2 0.5 0.1 0.1
0.3 0.1 0.7 0.5
0.3 0.1 0.7 0.3


V

[
7 4 2 4

]
Primal Communication Delay Lower Bound 0.1 seconds

Primal Communication Delay Upper Bound, 𝐵 1.0 seconds
𝛿 0.01
𝜌 0.0009
𝛾 0.01
𝛼 0.01

of the assignments was confirmed using a brute-force approach which calculated the expected value for every possible

assignment. Figure 4 shows the evolution of the expected values of each target post-engagement and the total expected

value, which is simply the sum of the expected values for each target.

All weapons initially choose to go after the high-valued Target 1 until they recognize that Weapon 1 is already

assigned to it. Weapon 2’s 𝑃𝑘 values were intentionally designed to show how weapons adapt to others’ assignments;

when Weapon 2 realizes that Weapon 1 is assigned to the high-valued Target 1, it is then able to further reduce the total

expected value by engaging Target 2 instead. Similarly, Weapon 5 engages Target 4 over Target 3.

The speed at which weapons are influenced by others’ assignments and adjust their own is related to the delay

bound 𝐵. Further experimentation confirmed that the larger the delay bound 𝐵, the longer it takes weapons to reach

their optimal assignments. Additionally, since 𝐵 is also related to dual updates which gradually enforce constraints,

larger values of 𝐵 also result in more indecisiveness at the beginning of a simulation. This can be seen in Weapons 2

and 5 around 25 seconds as this is the point that the constraints 𝑔 become strictly enforced. This results in a shift of

assignment and a temporary increase in the expected value. As weapons continue optimizing, they are able to reduce

the expected value by shifting assignments once again. This shift takes time as weapons gradually change their primal

variables (those responsible for assignments). This demonstrates the trade-off between frequent dual updates which

enforce the constraints earlier (but require more coordination) and less frequent dual updates which may result in a shift

in assignments later in the scenario (as seen here).
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(a) (b)

Fig. 3 Simulated baseline scenario: (a) The assignments for each of the five weapons over time. (b) The
projected 𝑃𝑘 for the targets based on the assignments over time.
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Fig. 4 Evolution of the expected values for each of the four targets and the total expected value (in black) for
simulated baseline scenario with five weapons and four targets.
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Fig. 5 Initial positions for weapons and targets in the homogeneous scenario. The dotted grey lines indicate the
final weapon-target assignments.

C. Homogeneous Weapons and Targets Scenario

Algorithm 1 was also run for fifteen weapons versus six targets. Three types of weapons (with five of each type)

were considered against four types of targets. Table 2 shows the parameters used. Each weapon type was strong against a

particular target type and all were equally weak against Target 6. As discussed in Section III, considering the probability

of arrival accommodates homogeneous weapons and targets. P(Arrival) was calculated in relation to distance from

the targets, both at the beginning of the simulation and every 𝐵 seconds afterwards. In particular, we defined a very

simplistic P(Arrival) for weapon 𝑖 against target 𝑗 as

𝑃 [𝑖 ], 𝑗 (Arrival) = 1 − 0.1(Distance between weapon 𝑖 and target 𝑗).

This is then used in Eq. (3) to determine the probability of arrival and kill. This is a very simplistic placeholder (one

that works for the distances associated in the scenario presented here) for more realistic probability of arrival models but

shows deadlock avoidance while allowing future work to progress to more complicated scenarios, e.g., interesting mixes

of weapons/targets, flyable path constraints, path dependent attrition, etc.

The initial positions of the weapons and targets are displayed in Figure 5 with the dotted grey lines indicating the

final assignments. Intuitively, weapons tend to be assigned to targets that are closest to them. This also prevents the

indecision that sometimes occurs towards the end of a simulation when a weapon is deciding between two options that
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Table 2 Parameters used for the homogeneous scenario

Parameter Value

𝑃𝑘



0.7 0.7 0.2 0.2 0.1 0.1
0.7 0.7 0.2 0.2 0.1 0.1
0.7 0.7 0.2 0.2 0.1 0.1
0.7 0.7 0.2 0.2 0.1 0.1
0.7 0.7 0.2 0.2 0.1 0.1
0.1 0.1 0.6 0.6 0.2 0.1
0.1 0.1 0.6 0.6 0.2 0.1
0.1 0.1 0.6 0.6 0.2 0.1
0.1 0.1 0.6 0.6 0.2 0.1
0.1 0.1 0.6 0.6 0.2 0.1
0.1 0.1 0.1 0.1 0.5 0.1
0.1 0.1 0.1 0.1 0.5 0.1
0.1 0.1 0.1 0.1 0.5 0.1
0.1 0.1 0.1 0.1 0.5 0.1
0.1 0.1 0.1 0.1 0.5 0.1


V

[
4 4 5 5 6 8

]
Primal Communication Delay Lower Bound 0.1 seconds

Primal Communication Delay Upper Bound, 𝐵 0.5 seconds
𝛿 0.01
𝜌 0.002
𝛾 0.01
𝛼 0.1

lead to very similar expected values. Here, as a weapon gets close to a target it is discouraged from changing course to a

similar target due to the distance-dependent 𝑃𝑘 values.

Figure 6a shows the evolution of the assignments over the simulation. By considering the P(Arrival), homogeneous

weapons are ultimately assigned to different targets including ones they are weaker against. Because weapons and

targets are at various distances, this provides sufficient heterogeneity to avoid a deadlock of partial assignments as

discussed in Section III. Rather than displaying the projected 𝑃𝑘 for all targets, Figure 6b shows the changing 𝑃𝑘 values

for Weapon 3 over the course of the simulation. As Weapon 3 reaches Target 1, the corresponding 𝑃𝑘 converges to the

unaltered 𝑃𝑘 in Table 2. Similarly, as it increases in distance from Target 2, the value of 𝑃𝑘 decreases. Results also

demonstrate the efficiency of the algorithm in real-time adjustment of the problem being considered, as each new 𝑃𝑘

table equates to a new problem for the weapons to solve. It also better reflects real-world applications where mission

planners may want to account for the difficulty of reaching particular targets. The expected value plot is not provided as
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Fig. 6 Results for the homogeneous scenario: (a) The assignments for each of the fifteen weapons over time. (b)
The total 𝑃𝑘 for Weapon 3 as a function of time.

the changing 𝑃𝑘 values make it difficult to determine the effect of assignment versus the weapons’ changing proximity

to targets.

D. Attrition Scenario

To demonstrate the benefits of the decentralized setup, an attrition scenario is implemented in which a weapon

is shut down while pursuing a target. The other weapons recognize that the weapon has been attrited and adapt the

optimization algorithm to ensure the problem is still solved and the expected post-engagement value is still minimized

by the remaining weapons. This scenario considers five weapons, three of which are physical robots and two of which

are simulated robots, to demonstrate practical usefulness on hardware. The weapons are tasked with engaging four

targets. Similar to the simulated scenarios, all weapons (both simulated and hardware) communicate through a local

network facilitated through ROS.

Table 3 shows the parameters used during the attrition scenario. The dual update frequency was reduced compared

to other experiments with dual updates occurring every 2𝐵 = 1.0 seconds as it removed some oscillations at the

beginning of the scenario. For demonstration purposes, the weapon to be attrited (Weapon 2) is very effective against

the high-valued Target 2.

Weapon 2 is attrited approximately 15 seconds after initialization by manually stopping its optimization algorithm

and halting any communication from it. The other weapons recognize that a weapon has been attrited when they have

not received any communications from that weapon after a predetermined threshold, in this case 5 seconds. At that

point, the remaining weapons run Algorithm 1 from their previous solutions to compute new assignments with the

attrited weapon being “assigned” to a null target (whose values and associated 𝑃𝑘 values are zero). Figure 7 shows

the weapons’ changing assignments and the four targets’ projected 𝑃𝑘 values. In Figure 7a, the gray region denotes
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Table 3 Parameters used for the attrition scenario

Parameter Value

𝑃𝑘



0.5 0.3 0.4 0.3
0.2 0.6 0.5 0.4
0.6 0.3 0.4 0.1
0.3 0.2 0.6 0.7
0.4 0.3 0.7 0.5


V

[
5 6 4 5

]
Primal Communication Delay Lower Bound 0.1 seconds

Primal Communication Delay Upper Bound, 𝐵 0.5 seconds
𝛿 0.01
𝜌 0.01
𝛾 0.1
𝛼 0.1

where Weapon 2 is attrited. It takes the other weapons less than 10 seconds to recognize that Weapon 2 is attrited and to

reach a new optimal assignment with Weapon 1 being reassigned. Target 2’s projected 𝑃𝑘 value is zero in Figure 7b for

the time between attrition and Weapon 1’s reassignment. The computation of new assignments can also be seen in

Figure 8, which shows the time evolution of expected values for the attrition case. This figure demonstrates the benefit

of allowing weapons to re-optimize: the new, final assignment has a lower expected value than that after attrition and

before re-assignment.

(a) (b)

Fig. 7 Results for the attrition scenario: (a) The assignments for each of the five weapons over time. The gray
region on Weapon 2’s assignment indicates the period where the weapon was attrited. (b) The achieved 𝑃𝑘 for
the targets as a function of the weapons’ assignments over time.
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Fig. 8 The evolution of the expected value for each of the four targets in the attrition scenario, and the total
expected value (black). The time of attrition is indicated by the dotted gray line.

VI. Conclusion
This paper presented a convex relaxation of the classical weapon-target assignment (WTA) problem, and provides

a solution in the form of an efficient distributed approach which is robust to asynchronous computations and

communications among workers. The theoretical results in this paper prove convergence of the proposed approach

and formally guarantees its robustness to realistic delays in computing and communicating information, suggesting

wide applicability for distributed and coordinated tasking efforts. Experimental results illustrated the performance

and scalability of the proposed solution by considering three weapon-target assignment scenarios, including a larger

number of workers and tasks as well as accounting for the loss of a worker during optimization. The experimental

results show that this algorithm is robust to changing conditions in practice, namely attrition, which validates the ability

of the proposed algorithm to leverage decentralization to adapt to changes and re-plan on the fly.

Appendix
Proof of Lemma 3: First the satisfaction of Assumptions A and B in [60] is shown, which enables the use of

Proposition 2.2 from that same reference. Assumption A requires that (i) 𝐿𝜿 (·, 𝝁(𝑡𝐵)) is bounded from below on 𝑋 ,

(ii) the set 𝑋 contains at least one point y such that y = Π𝑋 [y − ∇x𝐿𝜿 (y, 𝝁(𝑡𝐵))], and (iii) ∇x𝐿𝜿 (·, 𝝁(𝑡𝐵)) is Lipschitz

on 𝑋 . First, Remark 1 shows that ∇ 𝑓 is Lipschitz over 𝑋 . Because 𝑔 is affine, 𝐿𝜿 is affine in 𝝁, and 𝝁 ∈ M which
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is compact, ∇x𝐿𝜿 is also Lipschitz over 𝑋 . Then Assumption A.iii is satisfied. For every choice of 𝝁(𝑡𝐵) ∈ M, the

function 𝐿𝜿 (·, 𝝁(𝑡𝐵)) is bounded from below because it is continuous on its compact domain 𝑋 , and Assumption A.ii

is satisfied. For every 𝑡 ∈ 𝐷 and every fixed 𝝁(𝑡𝐵) ∈ M, the strong convexity of 𝐿𝜿
(
· , 𝝁(𝑡𝐵)

)
implies that it has a

unique minimum over 𝑋 , denoted x̂𝜿 (𝑡𝐵). This is the unique fixed point of the projected gradient descent mapping.

Then Assumption A.i is satisfied, and hence all conditions of Assumption A in [60] are satisfied.

Assumption B in [60] is more technical and is not restated here. It requires that (i) the isocost curves of 𝐿𝜿 (·, 𝝁(𝑡𝐵))

are separated, and (ii) the map 𝑅(y) = y −Π𝑋 [y − ∇x𝐿𝜿 (y, 𝝁(𝑡𝐵))] is Lipschitz at the origin. Both criteria are satisfied

by functions that are strongly convex with Lipschitz gradients, and 𝐿𝜿 (·, 𝝁(𝑡𝐵)) has both of these properties. Then

Assumption B is satisfied as well. An application Proposition 2.2 in [60] completes the proof. ■

Proof of Theorem 1: First note that the Lipschitz constant 𝑀 of 𝑔 may be upper-bounded by

𝑀 = max
x∈𝑋

∥∇𝑔(x)∥2 ≤ max
x∈𝑋

∥∇𝑔(x)∥𝐹 = max
x∈𝑋

√√√𝑚ℓ∑︁
𝑖=1

𝑚∑︁
𝑗=1

|∇𝑖𝑔 𝑗 (x) |2 =
√
𝑚ℓ, (6)

where the ∇𝑔(x) matrix has 𝑚 rows and 𝑚ℓ columns where each row is comprised of exactly ℓ entries that have the

value 1 with the other entries being 0. Summing the squared absolute value of these entries gives the answer shown

above.

Define x̂𝜿 (𝑡1𝐵) := arg minx∈𝑋 𝐿𝜿 (x, 𝝁(𝑡1𝐵)) and recall x̂𝜿 = arg minx∈𝑋 𝐿𝜿 (x, �̂�𝜿). Expanding the dual update law

and using the non-expansiveness of ΠM gives

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 = ∥ΠM [𝝁(𝑡1𝐵) + 𝜌(𝑔(x(𝑡2𝐵)) − 𝛿𝝁(𝑡1𝐵))] − ΠM [ �̂�𝜿 + 𝜌(𝑔(x̂𝜿) − 𝛿 �̂�𝜿)] ∥2

≤ ∥𝝁(𝑡1𝐵) + 𝜌(𝑔(x(𝑡2𝐵)) − 𝛿𝝁(𝑡1𝐵)) − �̂�𝜿 − 𝜌(𝑔(x̂𝜿) − 𝛿 �̂�𝜿)∥2

= ∥(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿) − 𝜌(𝑔(x̂𝜿) − 𝑔(x(𝑡2𝐵)))∥2

≤ (1 − 𝜌𝛿)2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿)∥2

−2𝜌(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿) − 𝑔(x(𝑡2𝐵))).

Adding 𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿 (𝑡1𝐵)) inside the last set of parentheses gives

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ (1 − 𝜌𝛿)2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿)∥2

−2𝜌(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿) − 𝑔(x̂𝜿 (𝑡1𝐵)))

−2𝜌(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))). (7)
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The application of Lemma 4 to the pairs (x̂𝜿 , �̂�𝜿) and (x̂𝜿 (𝑡1𝐵), 𝝁(𝑡1𝐵)) gives

(𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿) − 𝑔(x̂𝜿 (𝑡1𝐵))) ≥
𝛼

𝑀2 ∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥
2

≥ 𝛼

𝑚ℓ
∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥2, (8)

where the last inequality applies Eq. (6) to bound 𝑀 .

Applying Eq. (8) to the third term on the right-hand side of Eq. (7) gives

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ (1 − 𝜌𝛿)2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿)∥2

−2𝜌(1 − 𝜌𝛿) 𝛼
𝑚ℓ

∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥2

−2𝜌(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))). (9)

To bound the last term, observe that 0 ≤ ∥(1 − 𝜌𝛿) (𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))) + 𝜌(𝝁(𝑡1𝐵) − �̂�𝜿)∥2, which can be

expanded and rearranged to give

−2𝜌(1 − 𝜌𝛿) (𝝁(𝑡1𝐵) − �̂�𝜿)𝑇 (𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵)))

≤ (1 − 𝜌𝛿)2∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))∥2 + 𝜌2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2. (10)

Applying the inequality in Eq. (10) to the last term in Eq. (9), one finds

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ (1 − 𝜌𝛿)2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿)∥2

− 2𝜌(1 − 𝜌𝛿) 𝛼
𝑚ℓ

∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥2

+ (1 − 𝜌𝛿)2∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))∥2 + 𝜌2∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2. (11)

Next, add and subtract 𝑔(x̂𝜿 (𝑡1𝐵)) inside the norm in the second term of Eq. (11) to rewrite it as

𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿)∥2 ≤ 𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿 (𝑡1𝐵))∥2 + 𝜌2∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥2

+ 2𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿 (𝑡1𝐵))∥∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥.
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Applying this to the second term in Eq. (11) and grouping terms gives

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ ((1 − 𝜌𝛿)2 + 𝜌2)∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 +
(
𝜌2 − 2𝜌(1 − 𝜌𝛿) 𝛼

𝑚ℓ

)
∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥2

+ ((1 − 𝜌𝛿)2 + 𝜌2)∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x(𝑡2𝐵))∥2

+ 2𝜌2∥𝑔(x(𝑡2𝐵)) − 𝑔(x̂𝜿 (𝑡1𝐵))∥∥𝑔(x̂𝜿 (𝑡1𝐵)) − 𝑔(x̂𝜿)∥.

By hypothesis 𝜌 < 2𝛼
𝑚ℓ+2𝛼𝛿

, which makes the second term negative. Dropping this negative term and applying the

Lipschitz property of 𝑔 gives the upper bound

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ ((1 − 𝜌𝛿)2 + 𝜌2)∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + ((1 − 𝜌𝛿)2 + 𝜌2)𝑚ℓ∥x̂𝜿 (𝑡1𝐵) − x(𝑡2𝐵)∥2

+ 2𝜌2𝑚ℓ∥x(𝑡2𝐵) − x̂𝜿 (𝑡1𝐵)∥∥x̂𝜿 (𝑡1𝐵) − x̂𝜿 ∥.

Lemma 3 may be applied to ∥x̂𝜿 (𝑡1𝐵) − x(𝑡2𝐵)∥2 to give

∥x(𝑡2𝐵) − x̂𝜿 (𝑡1𝐵)∥2 ≤ 𝑞
2(𝑡2−𝑡1)
𝑝 ∥x(𝑡1𝐵) − x̂𝜿 (𝑡1𝐵)∥2,

where 𝑞𝑝 = (1− 𝑐𝛾) ∈ [0, 1). Next, the maximum distance between any two primal variables is given by max
x,y∈𝑋

∥x−y∥ =
√
𝑚ℓ. Using this maximum distance and setting 𝑞𝑑 = ((1 − 𝜌𝛿)2 + 𝜌2), it follows that 𝑞𝑑 ∈ [0, 1) because 𝜌 < 2𝛿

1+𝛿2 .

This gives the final result

∥𝝁(𝑡2𝐵) − �̂�𝜿 ∥2 ≤ 𝑞𝑑 ∥𝝁(𝑡1𝐵) − �̂�𝜿 ∥2 + 𝑞𝑑𝑞2(𝑡2−𝑡1)
𝑝 𝑚2ℓ2 + 2𝜌2𝑞𝑡2−𝑡1𝑝 𝑚2ℓ2. ■
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